An open API service providing repository metadata for many open source software ecosystems.

GitHub / vaitybharati 5 Repositories

Certified Data Scientist with 15+ years of cumulative experience; eager to leverage the machine learning, artificial intelligence and data science skills.

vaitybharati/vaitybharati

Config files for my GitHub profile.

Language: Jupyter Notebook - Size: 336 KB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 2 - Forks: 0

vaitybharati/Assignment-13-KNN-K-Nearest-Neighbors-Zoo-

Language: Jupyter Notebook - Size: 32.2 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-13-KNN-K-Nearest-Neighbors-Glass-

Language: Jupyter Notebook - Size: 37.1 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-12-Naives-Bayes-Classifier-Salary-

Language: Jupyter Notebook - Size: 6.84 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-18-Time-Series-Analysis-Forecasting-Airlines-Passengers-

Language: Jupyter Notebook - Size: 275 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-18-Time-Series-Analysis-Forecasting-CocaCola-Prices-

Language: Jupyter Notebook - Size: 271 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Inferential-Statistics

Inferential Statistics using Confidence Interval

Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau-_Basics5

Tableau-_Basics Tutorial 4

Size: 6.49 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/XGBM-and-LGBM

XGBM-and-LGBM

Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Web-scraping Fork of vaisakhnambiar/Web-scraping

Size: 1.6 MB - Last synced at: over 1 year ago - Pushed at: over 5 years ago - Stars: 0 - Forks: 0

vaitybharati/Visualization-Mat_Seaborn

Visualization using Matplotlib and Seaborn

Language: Jupyter Notebook - Size: 7.81 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau_Basics6

Tableau_Basics Tutorial 6

Size: 7.71 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics9

Tableau_Basics Tutorial 9

Size: 1.24 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics7

Tableau_Basics Tutorial 7

Size: 1.36 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/t_SNE

t_SNE - Training and testing model

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Text-Processing_Feature-Extraction

Feature Extraction, bigrams and trigrams, TFidf vectorizer, Generate wordcloud

Language: Jupyter Notebook - Size: 937 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau_Basics8

Tableau_Basics Tutorial 8

Size: 7.78 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-Basics

Tableau basics tutorial

Size: 32.2 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics2

Tableau_Basics2 tutorial

Size: 1.17 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-_Basics4

Tableau-_Basics Tutorial 4

Size: 1.29 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-_Basics3

Tableau-_Basics3 Tutorial

Size: 1.2 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Simple-linear-Reg-1

Simple-linear-Reg-1

Language: Jupyter Notebook - Size: 43 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Survival-Analytics

Applying KaplanMeierFitter model on Time and Events

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/SVM

SVM

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Stack-Overflow-1-Python-Concatenate

Concatenate two time columns into one using pandas

Language: Jupyter Notebook - Size: 28.3 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Sample-Datasets

Sample datasets for practice (Vega datasets)

Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/R_tutorial1

R_tutorial1 - Basic Arthematic

Language: Rebol - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/scikit-learn-tips Fork of justmarkham/scikit-learn-tips

:robot::zap: scikit-learn tips

Size: 245 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics_calc-2

R code 2

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_Basics_calc1

R code 1a

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework-earthquake

R_basics- Earth Quake data

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework-5_sept

R_basics - Visualizing Air Quality data

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics

R_basics

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P35.-Unsupervised-ML---Recommendation-System-Data-Mining-Movies-

Unsupervised-ML-Recommendation-System-Data-Mining-Movies. Recommend movies based on the ratings: Sort by User IDs, number of unique users in the dataset, number of unique movies in the dataset, Impute those NaNs with 0 values, Calculating Cosine Similarity between Users on array data, Store the results in a dataframe format, Set the index and column names to user ids, Slicing first 5 rows and first 5 columns, Nullifying diagonal values, Most Similar Users, extract the movies which userId 6 & 168 have watched.

Language: Jupyter Notebook - Size: 10.7 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework

R_basics Functions

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Reviews_Classification_Naive_Bayes

Data Cleaning, N-gram, WordCloud, Applying naive bayes for classification, Using TFIDF

Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P26.-Supervised-ML---Multiple-Linear-Regression---Cars-dataset

Supervised-ML---Multiple-Linear-Regression---Cars-dataset. Model MPG of a car based on other variables. EDA, Correlation Analysis, Model Building, Model Testing, Model Validation Techniques, Collinearity Problem Check, Residual Analysis, Model Deletion Diagnostics (checking Outliers or Influencers) Two Techniques : 1. Cook's Distance & 2. Leverage value, Improving the Model, Model - Re-build, Re-check and Re-improve - 2, Model - Re-build, Re-check and Re-improve - 3, Final Model, Model Predictions.

Language: Jupyter Notebook - Size: 507 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P36.-Supervised-ML---Decision-Tree---C5.0-Entropy-Iris-Flower-

Supervised-ML-Decision-Tree-C5.0-Entropy-Iris-Flower-Using Entropy Criteria - Classification Model. Import Libraries and data set, EDA, Apply Label Encoding, Model Building - Building/Training Decision Tree Classifier (C5.0) using Entropy Criteria. Validation and Testing Decision Tree Classifier (C5.0) Model

Language: Jupyter Notebook - Size: 141 KB - Last synced at: over 1 year ago - Pushed at: over 3 years ago - Stars: 3 - Forks: 0

vaitybharati/P32.-Unsupervised-ML---Association-Rules-Data-Mining-Titanic-

Unsupervised-ML---Association-Rules-Data-Mining-Titanic. Data Preprocessing: As the data is categorical format, we are using One Hot Encoding to convert into numerical format. Apriori Algorithm: frequent item sets & association rules. A leverage value of 0 indicates independence. Range will be [-1 1]. A high conviction value means that the consequent is highly depending on the antecedent and range [0 inf]. Lift Ratio > 1 is a good influential rule in selecting the associated transactions.

Language: Jupyter Notebook - Size: 7.81 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Probabilty-calc-2

Probability Calculation in Python

Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Ridge_Lasso_ElasticNet

Model Building and Testing using Ridge, Lasso and ElasticNet Methods

Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P28.-Supervised-ML---Logistic-Regression---Appointing-Attorney-or-not

Supervised-ML---Logistic-Regression---Appointing-Attorney-or-not. EDA, Model Building, Model Predictions, Testing Model Accuracy, ROC Curve plotting and finding AUC value.

Language: Jupyter Notebook - Size: 20.5 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Recommendation-Engine

Recommendation-Engine

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R3

R3 - Joins and Appling Functions in R

Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-code-2

R-code-2

Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R1

R Basics Tutorial-1

Language: R - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R2

R2 - Decision Making statements in R

Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-Basics2

R-Basics2 homework

Language: R - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/P31.-Unsupervised-ML---DBSCAN-Clustering-Wholesale-Customers-

Unsupervised-ML---DBSCAN-Clustering-Wholesale-Customers. Import Libraries, Import Dataset, Normalize heterogenous numerical data using standard scalar fit transform to dataset, DBSCAN Clustering, Noisy samples are given the label -1, Adding clusters to dataset.

Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P30.-Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ.-

Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ. Use Elbow Graph to find optimum number of clusters (K value) from K values range. The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS. Plot K values range vs WCSS to get Elbow graph for choosing K (no. of clusters)

Language: Jupyter Notebook - Size: 72.3 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P18.-Hypothesis-Testing-2-Sample-2-Tail-Test-Drugs-and-Placebos-

Hypothesis-Testing-2-Sample-2-Tail-Test-Drugs-and-Placebos. Note: This python code states both 2-sample 1-tail and 2-sample 2-tail codes. Treatment group mean is Mu1 Contrl group mean is Mu2 2-sample 2-tail ttest Assume Null Hypothesis Ho as Mu1 = Mu2 Thus Alternate Hypothesis Ha as Mu1 ≠ Mu2.

Language: Jupyter Notebook - Size: 94.7 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-code-1a

R-code-1a

Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Probability-Calc

Probability Calculations for Normal distribution

Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P34.-Unsupervised-ML---t-SNE-Data-Mining-Cancer-

Unsupervised-ML-t-SNE-Data-Mining-Cancer. Import Libraries, Import Dataset, Convert data to array format, Separate array into input and output components, TSNE implementation, Cluster Visualization

Language: Jupyter Notebook - Size: 778 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P21.-Hypothesis-Testing-Chi2-Test-Athletes-and-Smokers-

Hypothesis-Testing-Chi2-Test-Athletes-and-Smokers. Assume Null Hypothesis as Ho: Independence of categorical variables (Athlete and Smoking not related). Thus Alternate Hypothesis as Ha: Dependence of categorical variables (Athlete and Smoking is somewhat/significantly related). As (p_value = 0.00038) < (α = 0.05); Reject Null Hypothesis i.e. Dependence among categorical variables Thus Athlete and Smoking is somewhat/significantly related.

Language: Jupyter Notebook - Size: 62.5 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 1

vaitybharati/PCA

PCA

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P25.-Supervised-ML---Simple-Linear-Regression---Waist-Circumference-Adipose-Tissue-Data

Supervised-ML---Simple-Linear-Regression---Waist-Circumference-Adipose-Tissue-Data. EDA and data visualization, Correlation Analysis, Model Building, Model Testing, Model Prediction.

Language: Jupyter Notebook - Size: 178 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Pandas

Pandas Tutorial

Language: Jupyter Notebook - Size: 74.2 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P33.-Unsupervised-ML---PCA-Data-Mining-Univ-

Unsupervised-ML---PCA-Data-Mining-Univ. Import Dataset, Converting data to numpy array, Normalizing the numerical data, Applying PCA Fit Transform to dataset, PCA Components matrix or covariance Matrix, Variance of each PCA, Final Dataframe, Visualization of PCAs, Eigen vector and eigen values for a given matrix.

Language: Jupyter Notebook - Size: 45.9 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P04.-Matplotlib-Visualization

Plotting two different categories- box plot, barplot, histogram. Plotting single category- Pie chart, bar chart. Different Plots- Scatter Plot, Histogram, Box Plot, Violin Plot

Language: Jupyter Notebook - Size: 729 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P29.-Unsupervised-ML---Hierarchical-Clustering-Univ.-

Unsupervised-ML---Hierarchical-Clustering-University Data. Import libraries, Import dataset, Create Normalized data frame (considering only the numerical part of data), Create dendrograms, Create Clusters, Plot Clusters.

Language: Jupyter Notebook - Size: 45.9 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P17.-Hypothesis-Testing-1-Sample-1-Tail-Test-Salmonella-Outbreak-

Hypothesis-Testing-1-Sample-1-Tail-Test-Salmonella-Outbreak. 1-sample 1-tail ttest. Assume Null Hypothesis Ho as Mean Salmonella <= 0.3. Thus Alternate Hypothesis Ha as Mean Salmonella > 0.3. As No direct code for 1-sample 1-tail ttest available with unknown SD and arrays of means. Hence we find probability using 1-sample 2-tail ttest and divide it by 2 to get 1-tail ttest.

Language: Jupyter Notebook - Size: 78.1 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P22.-Hypothesis-Testing-Chi2-Test-Human-Gender-and-Choice-of-Pets-

Hypothesis-Testing-Chi2-Test-Human-Gender-and-Choice-of-Pets. Assume Null Hypothesis as Ho: Human Gender and choice of pets is independent and not related. Thus Alternate Hypothesis as Ha : Human Gender and choice of pets is dependent and related. As (p_valu=0.1031) > (α = 0.05); Accept Null Hypothesis i.e Independence among categorical variables. Thus, there is no relation between Human Gender and Choice of Pets.

Language: Jupyter Notebook - Size: 35.2 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P24.-Supervised-ML---Simple-Linear-Regression---Newspaper-data

Supervised-ML---Simple-Linear-Regression---Newspaper-data. EDA and Visualization, Correlation Analysis, Model Building, Model Testing, Model predictions.

Language: Jupyter Notebook - Size: 196 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 2 - Forks: 0

vaitybharati/P20.-Hypothesis-Testing-Anova-Test---Iris-Flower-dataset

Hypothesis Testing Anova Test - Iris Flower dataset. Anova ftest statistics: Analysis of varaince between more than 2 samples or columns. Assume Null Hypothesis Ho as No Varaince: All samples population means are same. Thus Alternate Hypothesis Ha as It has Variance: Atleast one population mean is different. As (p_value = 0) < (α = 0.05); Reject Null Hypothesis i.e. Atleast one population mean is different Thus there is variance in more than 2 samples.

Language: Jupyter Notebook - Size: 5.86 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P23.-EDA-1

EDA (Exploratory Data Analysis) -1: Loading the Datasets, Data type conversions,Removing duplicate entries, Dropping the column, Renaming the column, Outlier Detection, Missing Values and Imputation (Numerical and Categorical), Scatter plot and Correlation analysis, Transformations, Automatic EDA Methods (Pandas Profiling and Sweetviz).

Language: Jupyter Notebook - Size: 215 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 2 - Forks: 1

vaitybharati/P16.-Hypothesis-Testing-1S2T---Call-Center-Process

Hypothesis Testing 1S2T - Call Center Process. Sample Parameters: n=50, df=50-1=49, Mean1=4, SD1=3 1-sample 2-tail ttest Assume Null Hypothesis Ho as Mean1 = 4 Thus, Alternate Hypothesis Ha as Mean1 ≠ 4

Language: Jupyter Notebook - Size: 196 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P19.-Hypothesis-Testing-2-Proportion-T-test-Students-Jobs-in-2-States-

Hypothesis-Testing-2-Proportion-T-test-Students-Jobs-in-2-States. Assume Null Hypothesis as Ho is p1-p2 = 0 i.e. p1 ≠ p2. Thus Alternate Hypthesis as Ha is p1 = p2. Explanation of bernoulli Binomial RV: np.random.binomial(n=1,p,size) Suppose you perform an experiment with two possible outcomes: either success or failure. Success happens with probability p, while failure happens with probability 1-p. A random variable that takes value 1 in case of success and 0 in case of failure is called a Bernoulli random variable. Here, n = 1, Because you need to check whether it is success or failure one time (Placement or not-placement) (1 trial) p = probability of success size = number of times you will check this (Ex: for 247 students each one time = 247) Explanation of Binomial RV: np.random.binomial(n=1,p,size) (Incase of not a Bernoulli RV, n = number of trials) For egs: check how many times you will get six if you roll a dice 10 times n=10, P=1/6 and size = repetition of experiment 'dice rolled 10 times', say repeated 18 times, then size=18. As (p_value=0.7255) > (α = 0.05); Accept Null Hypothesis i.e. p1 ≠ p2 There is significant differnce in population proportions of state1 and state2 who report that they have been placed immediately after education.

Language: Jupyter Notebook - Size: 176 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P15.-Hypothesis-Testing-1S1T---Super-Market-Loyality-Program

Hypothesis-Testing 1S1T-Super-Market-Loyality-Program. Population Parameters: Mean=120 Sample Parameters: n=80, Mean=130, SD=40, df=80-1=79

Language: Jupyter Notebook - Size: 51.8 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P11.-Normal-Distribution-of-Stocks

To understand Normal Distribution and its application. Daily returns of stocks traded in BSE (Bombay Stock Exchange). To understand risk and returns associated with various stocks before investing in them. BEML and GLAXO Stocks study.

Language: Jupyter Notebook - Size: 240 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P14.-Confidence-Interval-for-Stocks

Find confidence intervals for Beml and Glaxo stocks. Confidence Interval Estimate

Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P12.-C.I.E-using-z-values-Confidence-Interval-Estimate-

credit card launch example sample mean: 1990 sample SD: 2833 Pop SD: 2500 Pop mean: ? n=140 Q: Construct 95% confidence interval for mean card balance and interpret it

Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P10.-Probability-Calc-2

Suppose GMAT scores can be reasonably modeled using a normal distribution with mean=711 and SD = 29. What is P(X<=680) What is P(697<=X<=740)

Language: Jupyter Notebook - Size: 16.6 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P13.-C.I.E-using-t-values-Confidence-Interval-Estimate-

credit card launch example sample mean: 1990 sample SD: 2833 Pop mean: ? n=140 (In cases, where pop SD is not known, use t-values and practically in all problems prefer t over z) Q: Construct 95% confidence interval for mean card balance and interpret it

Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P01.-Pandas-1

Understanding Pandas, Importing datasets, Deriving Attributes, Performing Statistics

Language: Jupyter Notebook - Size: 9.77 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P07.-Chebyshev-s-practice

Chebyshev's Theorem 3/4th or 75% of observations lie 2 Standard deviations of mean i.e. mean+2SD and mean-2SD

Language: Jupyter Notebook - Size: 5.86 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P06.-Seaborn-Visualization-Titanic

Seaborn Visualization on Titanic Dataset Visual exploration of different features on No. of people survived or otherwise Visualization using FacetGrid function, Lambda function and criterion function Visualization of subplots

Language: Jupyter Notebook - Size: 346 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P05.-Seaborn-Visualization

Strip Plot, Grouping with Strip Plot, Swarm Plot, Box and Violin Plot, placing plots together, Combining the plots, Joint Plot, Density Plot, Pair Plot

Language: Jupyter Notebook - Size: 324 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P09.-Probability-Calc-1

Find the probability that a normally distributed random variable has a mean of 60 and a standard deviation of 10 and we want to find the probability of x is less than 70.

Language: Jupyter Notebook - Size: 16.6 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Named_Entity_Recognition_Emotion_Mining

Named Entity Recognition , Emotion Mining in Python

Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P08.-Box-Plot-Practice

Box Plot - using dataframe in pandas Inserting Minor and Major gridlines Deriving LQ, UQ, IQR, Upper Whisker and Lower Whisker length

Language: Jupyter Notebook - Size: 8.79 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Normal-Distribution

Normal-Distribution

Language: Jupyter Notebook - Size: 80.1 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Neural-Network_Back-Propagation

Model building and testing using NN Back Propagation

Language: Jupyter Notebook - Size: 14.6 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P02.-Pandas-2

Understanding Pandas, Groupby Function, Filtering Function

Language: Jupyter Notebook - Size: 9.77 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/NN_Hyperparameter-Tuning

Tuning of Hyperparameters :- Batch Size and Epochs. Tuning of Hyperparameters:- Learning rate and Drop out rate. Tuning of Hyperparameters:- Activation Function and Kernel Initializer. Tuning of Hyperparameter :-Number of Neurons in activation layer. Training model with optimum values of Hyperparameters.

Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 1

vaitybharati/P03.-Pandas-3

Understanding Pandas, Visualization using Matplotlib, Plotting subplots

Language: Jupyter Notebook - Size: 61.5 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P00.-Sample-Datasets

Sample Datasets Database for Data Science ML algorithms practice

Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/mysql_null-commands

mysql_null-commands

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Students-table

Mysql-Students-table

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-date-time

Mysql-date-time

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Data-Manipulation

Mysql-Data-Manipulation

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-practice-tables

Mysql-practice-tables

Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/mysql-create-drop-rename

mysql-create-drop-rename

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/ml Fork of KxSystems/ml

Machine-learning toolkit

Size: 47.1 MB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Alter-commands

Mysql-Alter-commands

Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Matplotlip

MatPlotlib Python codes

Language: Jupyter Notebook - Size: 47.9 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Multi-Linear-Reg

Multi-Linear-Reg

Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 3 - Forks: 1

vaitybharati/Model-Validation-Methods

Model-Validation-Methods

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 1

vaitybharati/Logistic-Regression

Logistic-Regression

Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 1

vaitybharati/KNN

K Nearest Neighbours in Python

Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0