GitHub / vaitybharati 5 Repositories
Certified Data Scientist with 15+ years of cumulative experience; eager to leverage the machine learning, artificial intelligence and data science skills.
vaitybharati/vaitybharati
Config files for my GitHub profile.
Language: Jupyter Notebook - Size: 336 KB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 2 - Forks: 0

vaitybharati/Assignment-13-KNN-K-Nearest-Neighbors-Zoo-
Language: Jupyter Notebook - Size: 32.2 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-13-KNN-K-Nearest-Neighbors-Glass-
Language: Jupyter Notebook - Size: 37.1 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-12-Naives-Bayes-Classifier-Salary-
Language: Jupyter Notebook - Size: 6.84 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-18-Time-Series-Analysis-Forecasting-Airlines-Passengers-
Language: Jupyter Notebook - Size: 275 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Assignment-18-Time-Series-Analysis-Forecasting-CocaCola-Prices-
Language: Jupyter Notebook - Size: 271 KB - Last synced at: over 1 year ago - Pushed at: about 3 years ago - Stars: 0 - Forks: 0

vaitybharati/Inferential-Statistics
Inferential Statistics using Confidence Interval
Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau-_Basics5
Tableau-_Basics Tutorial 4
Size: 6.49 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/XGBM-and-LGBM
XGBM-and-LGBM
Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Web-scraping Fork of vaisakhnambiar/Web-scraping
Size: 1.6 MB - Last synced at: over 1 year ago - Pushed at: over 5 years ago - Stars: 0 - Forks: 0

vaitybharati/Visualization-Mat_Seaborn
Visualization using Matplotlib and Seaborn
Language: Jupyter Notebook - Size: 7.81 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau_Basics6
Tableau_Basics Tutorial 6
Size: 7.71 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics9
Tableau_Basics Tutorial 9
Size: 1.24 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics7
Tableau_Basics Tutorial 7
Size: 1.36 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/t_SNE
t_SNE - Training and testing model
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Text-Processing_Feature-Extraction
Feature Extraction, bigrams and trigrams, TFidf vectorizer, Generate wordcloud
Language: Jupyter Notebook - Size: 937 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Tableau_Basics8
Tableau_Basics Tutorial 8
Size: 7.78 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-Basics
Tableau basics tutorial
Size: 32.2 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau_Basics2
Tableau_Basics2 tutorial
Size: 1.17 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-_Basics4
Tableau-_Basics Tutorial 4
Size: 1.29 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Tableau-_Basics3
Tableau-_Basics3 Tutorial
Size: 1.2 MB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Simple-linear-Reg-1
Simple-linear-Reg-1
Language: Jupyter Notebook - Size: 43 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Survival-Analytics
Applying KaplanMeierFitter model on Time and Events
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/SVM
SVM
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Stack-Overflow-1-Python-Concatenate
Concatenate two time columns into one using pandas
Language: Jupyter Notebook - Size: 28.3 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Sample-Datasets
Sample datasets for practice (Vega datasets)
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/R_tutorial1
R_tutorial1 - Basic Arthematic
Language: Rebol - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/scikit-learn-tips Fork of justmarkham/scikit-learn-tips
:robot::zap: scikit-learn tips
Size: 245 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics_calc-2
R code 2
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_Basics_calc1
R code 1a
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework-earthquake
R_basics- Earth Quake data
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework-5_sept
R_basics - Visualizing Air Quality data
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics
R_basics
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P35.-Unsupervised-ML---Recommendation-System-Data-Mining-Movies-
Unsupervised-ML-Recommendation-System-Data-Mining-Movies. Recommend movies based on the ratings: Sort by User IDs, number of unique users in the dataset, number of unique movies in the dataset, Impute those NaNs with 0 values, Calculating Cosine Similarity between Users on array data, Store the results in a dataframe format, Set the index and column names to user ids, Slicing first 5 rows and first 5 columns, Nullifying diagonal values, Most Similar Users, extract the movies which userId 6 & 168 have watched.
Language: Jupyter Notebook - Size: 10.7 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R_basics-homework
R_basics Functions
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Reviews_Classification_Naive_Bayes
Data Cleaning, N-gram, WordCloud, Applying naive bayes for classification, Using TFIDF
Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P26.-Supervised-ML---Multiple-Linear-Regression---Cars-dataset
Supervised-ML---Multiple-Linear-Regression---Cars-dataset. Model MPG of a car based on other variables. EDA, Correlation Analysis, Model Building, Model Testing, Model Validation Techniques, Collinearity Problem Check, Residual Analysis, Model Deletion Diagnostics (checking Outliers or Influencers) Two Techniques : 1. Cook's Distance & 2. Leverage value, Improving the Model, Model - Re-build, Re-check and Re-improve - 2, Model - Re-build, Re-check and Re-improve - 3, Final Model, Model Predictions.
Language: Jupyter Notebook - Size: 507 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P36.-Supervised-ML---Decision-Tree---C5.0-Entropy-Iris-Flower-
Supervised-ML-Decision-Tree-C5.0-Entropy-Iris-Flower-Using Entropy Criteria - Classification Model. Import Libraries and data set, EDA, Apply Label Encoding, Model Building - Building/Training Decision Tree Classifier (C5.0) using Entropy Criteria. Validation and Testing Decision Tree Classifier (C5.0) Model
Language: Jupyter Notebook - Size: 141 KB - Last synced at: over 1 year ago - Pushed at: over 3 years ago - Stars: 3 - Forks: 0

vaitybharati/P32.-Unsupervised-ML---Association-Rules-Data-Mining-Titanic-
Unsupervised-ML---Association-Rules-Data-Mining-Titanic. Data Preprocessing: As the data is categorical format, we are using One Hot Encoding to convert into numerical format. Apriori Algorithm: frequent item sets & association rules. A leverage value of 0 indicates independence. Range will be [-1 1]. A high conviction value means that the consequent is highly depending on the antecedent and range [0 inf]. Lift Ratio > 1 is a good influential rule in selecting the associated transactions.
Language: Jupyter Notebook - Size: 7.81 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Probabilty-calc-2
Probability Calculation in Python
Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 0

vaitybharati/Ridge_Lasso_ElasticNet
Model Building and Testing using Ridge, Lasso and ElasticNet Methods
Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P28.-Supervised-ML---Logistic-Regression---Appointing-Attorney-or-not
Supervised-ML---Logistic-Regression---Appointing-Attorney-or-not. EDA, Model Building, Model Predictions, Testing Model Accuracy, ROC Curve plotting and finding AUC value.
Language: Jupyter Notebook - Size: 20.5 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Recommendation-Engine
Recommendation-Engine
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R3
R3 - Joins and Appling Functions in R
Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-code-2
R-code-2
Language: R - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R1
R Basics Tutorial-1
Language: R - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R2
R2 - Decision Making statements in R
Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-Basics2
R-Basics2 homework
Language: R - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

vaitybharati/P31.-Unsupervised-ML---DBSCAN-Clustering-Wholesale-Customers-
Unsupervised-ML---DBSCAN-Clustering-Wholesale-Customers. Import Libraries, Import Dataset, Normalize heterogenous numerical data using standard scalar fit transform to dataset, DBSCAN Clustering, Noisy samples are given the label -1, Adding clusters to dataset.
Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P30.-Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ.-
Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ. Use Elbow Graph to find optimum number of clusters (K value) from K values range. The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS. Plot K values range vs WCSS to get Elbow graph for choosing K (no. of clusters)
Language: Jupyter Notebook - Size: 72.3 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P18.-Hypothesis-Testing-2-Sample-2-Tail-Test-Drugs-and-Placebos-
Hypothesis-Testing-2-Sample-2-Tail-Test-Drugs-and-Placebos. Note: This python code states both 2-sample 1-tail and 2-sample 2-tail codes. Treatment group mean is Mu1 Contrl group mean is Mu2 2-sample 2-tail ttest Assume Null Hypothesis Ho as Mu1 = Mu2 Thus Alternate Hypothesis Ha as Mu1 ≠ Mu2.
Language: Jupyter Notebook - Size: 94.7 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/R-code-1a
R-code-1a
Language: R - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Probability-Calc
Probability Calculations for Normal distribution
Language: Jupyter Notebook - Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P34.-Unsupervised-ML---t-SNE-Data-Mining-Cancer-
Unsupervised-ML-t-SNE-Data-Mining-Cancer. Import Libraries, Import Dataset, Convert data to array format, Separate array into input and output components, TSNE implementation, Cluster Visualization
Language: Jupyter Notebook - Size: 778 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P21.-Hypothesis-Testing-Chi2-Test-Athletes-and-Smokers-
Hypothesis-Testing-Chi2-Test-Athletes-and-Smokers. Assume Null Hypothesis as Ho: Independence of categorical variables (Athlete and Smoking not related). Thus Alternate Hypothesis as Ha: Dependence of categorical variables (Athlete and Smoking is somewhat/significantly related). As (p_value = 0.00038) < (α = 0.05); Reject Null Hypothesis i.e. Dependence among categorical variables Thus Athlete and Smoking is somewhat/significantly related.
Language: Jupyter Notebook - Size: 62.5 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 1

vaitybharati/PCA
PCA
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P25.-Supervised-ML---Simple-Linear-Regression---Waist-Circumference-Adipose-Tissue-Data
Supervised-ML---Simple-Linear-Regression---Waist-Circumference-Adipose-Tissue-Data. EDA and data visualization, Correlation Analysis, Model Building, Model Testing, Model Prediction.
Language: Jupyter Notebook - Size: 178 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Pandas
Pandas Tutorial
Language: Jupyter Notebook - Size: 74.2 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P33.-Unsupervised-ML---PCA-Data-Mining-Univ-
Unsupervised-ML---PCA-Data-Mining-Univ. Import Dataset, Converting data to numpy array, Normalizing the numerical data, Applying PCA Fit Transform to dataset, PCA Components matrix or covariance Matrix, Variance of each PCA, Final Dataframe, Visualization of PCAs, Eigen vector and eigen values for a given matrix.
Language: Jupyter Notebook - Size: 45.9 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P04.-Matplotlib-Visualization
Plotting two different categories- box plot, barplot, histogram. Plotting single category- Pie chart, bar chart. Different Plots- Scatter Plot, Histogram, Box Plot, Violin Plot
Language: Jupyter Notebook - Size: 729 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P29.-Unsupervised-ML---Hierarchical-Clustering-Univ.-
Unsupervised-ML---Hierarchical-Clustering-University Data. Import libraries, Import dataset, Create Normalized data frame (considering only the numerical part of data), Create dendrograms, Create Clusters, Plot Clusters.
Language: Jupyter Notebook - Size: 45.9 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P17.-Hypothesis-Testing-1-Sample-1-Tail-Test-Salmonella-Outbreak-
Hypothesis-Testing-1-Sample-1-Tail-Test-Salmonella-Outbreak. 1-sample 1-tail ttest. Assume Null Hypothesis Ho as Mean Salmonella <= 0.3. Thus Alternate Hypothesis Ha as Mean Salmonella > 0.3. As No direct code for 1-sample 1-tail ttest available with unknown SD and arrays of means. Hence we find probability using 1-sample 2-tail ttest and divide it by 2 to get 1-tail ttest.
Language: Jupyter Notebook - Size: 78.1 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P22.-Hypothesis-Testing-Chi2-Test-Human-Gender-and-Choice-of-Pets-
Hypothesis-Testing-Chi2-Test-Human-Gender-and-Choice-of-Pets. Assume Null Hypothesis as Ho: Human Gender and choice of pets is independent and not related. Thus Alternate Hypothesis as Ha : Human Gender and choice of pets is dependent and related. As (p_valu=0.1031) > (α = 0.05); Accept Null Hypothesis i.e Independence among categorical variables. Thus, there is no relation between Human Gender and Choice of Pets.
Language: Jupyter Notebook - Size: 35.2 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P24.-Supervised-ML---Simple-Linear-Regression---Newspaper-data
Supervised-ML---Simple-Linear-Regression---Newspaper-data. EDA and Visualization, Correlation Analysis, Model Building, Model Testing, Model predictions.
Language: Jupyter Notebook - Size: 196 KB - Last synced at: over 1 year ago - Pushed at: almost 4 years ago - Stars: 2 - Forks: 0

vaitybharati/P20.-Hypothesis-Testing-Anova-Test---Iris-Flower-dataset
Hypothesis Testing Anova Test - Iris Flower dataset. Anova ftest statistics: Analysis of varaince between more than 2 samples or columns. Assume Null Hypothesis Ho as No Varaince: All samples population means are same. Thus Alternate Hypothesis Ha as It has Variance: Atleast one population mean is different. As (p_value = 0) < (α = 0.05); Reject Null Hypothesis i.e. Atleast one population mean is different Thus there is variance in more than 2 samples.
Language: Jupyter Notebook - Size: 5.86 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P23.-EDA-1
EDA (Exploratory Data Analysis) -1: Loading the Datasets, Data type conversions,Removing duplicate entries, Dropping the column, Renaming the column, Outlier Detection, Missing Values and Imputation (Numerical and Categorical), Scatter plot and Correlation analysis, Transformations, Automatic EDA Methods (Pandas Profiling and Sweetviz).
Language: Jupyter Notebook - Size: 215 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 2 - Forks: 1

vaitybharati/P16.-Hypothesis-Testing-1S2T---Call-Center-Process
Hypothesis Testing 1S2T - Call Center Process. Sample Parameters: n=50, df=50-1=49, Mean1=4, SD1=3 1-sample 2-tail ttest Assume Null Hypothesis Ho as Mean1 = 4 Thus, Alternate Hypothesis Ha as Mean1 ≠ 4
Language: Jupyter Notebook - Size: 196 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P19.-Hypothesis-Testing-2-Proportion-T-test-Students-Jobs-in-2-States-
Hypothesis-Testing-2-Proportion-T-test-Students-Jobs-in-2-States. Assume Null Hypothesis as Ho is p1-p2 = 0 i.e. p1 ≠ p2. Thus Alternate Hypthesis as Ha is p1 = p2. Explanation of bernoulli Binomial RV: np.random.binomial(n=1,p,size) Suppose you perform an experiment with two possible outcomes: either success or failure. Success happens with probability p, while failure happens with probability 1-p. A random variable that takes value 1 in case of success and 0 in case of failure is called a Bernoulli random variable. Here, n = 1, Because you need to check whether it is success or failure one time (Placement or not-placement) (1 trial) p = probability of success size = number of times you will check this (Ex: for 247 students each one time = 247) Explanation of Binomial RV: np.random.binomial(n=1,p,size) (Incase of not a Bernoulli RV, n = number of trials) For egs: check how many times you will get six if you roll a dice 10 times n=10, P=1/6 and size = repetition of experiment 'dice rolled 10 times', say repeated 18 times, then size=18. As (p_value=0.7255) > (α = 0.05); Accept Null Hypothesis i.e. p1 ≠ p2 There is significant differnce in population proportions of state1 and state2 who report that they have been placed immediately after education.
Language: Jupyter Notebook - Size: 176 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P15.-Hypothesis-Testing-1S1T---Super-Market-Loyality-Program
Hypothesis-Testing 1S1T-Super-Market-Loyality-Program. Population Parameters: Mean=120 Sample Parameters: n=80, Mean=130, SD=40, df=80-1=79
Language: Jupyter Notebook - Size: 51.8 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P11.-Normal-Distribution-of-Stocks
To understand Normal Distribution and its application. Daily returns of stocks traded in BSE (Bombay Stock Exchange). To understand risk and returns associated with various stocks before investing in them. BEML and GLAXO Stocks study.
Language: Jupyter Notebook - Size: 240 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P14.-Confidence-Interval-for-Stocks
Find confidence intervals for Beml and Glaxo stocks. Confidence Interval Estimate
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P12.-C.I.E-using-z-values-Confidence-Interval-Estimate-
credit card launch example sample mean: 1990 sample SD: 2833 Pop SD: 2500 Pop mean: ? n=140 Q: Construct 95% confidence interval for mean card balance and interpret it
Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P10.-Probability-Calc-2
Suppose GMAT scores can be reasonably modeled using a normal distribution with mean=711 and SD = 29. What is P(X<=680) What is P(697<=X<=740)
Language: Jupyter Notebook - Size: 16.6 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P13.-C.I.E-using-t-values-Confidence-Interval-Estimate-
credit card launch example sample mean: 1990 sample SD: 2833 Pop mean: ? n=140 (In cases, where pop SD is not known, use t-values and practically in all problems prefer t over z) Q: Construct 95% confidence interval for mean card balance and interpret it
Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P01.-Pandas-1
Understanding Pandas, Importing datasets, Deriving Attributes, Performing Statistics
Language: Jupyter Notebook - Size: 9.77 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P07.-Chebyshev-s-practice
Chebyshev's Theorem 3/4th or 75% of observations lie 2 Standard deviations of mean i.e. mean+2SD and mean-2SD
Language: Jupyter Notebook - Size: 5.86 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P06.-Seaborn-Visualization-Titanic
Seaborn Visualization on Titanic Dataset Visual exploration of different features on No. of people survived or otherwise Visualization using FacetGrid function, Lambda function and criterion function Visualization of subplots
Language: Jupyter Notebook - Size: 346 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P05.-Seaborn-Visualization
Strip Plot, Grouping with Strip Plot, Swarm Plot, Box and Violin Plot, placing plots together, Combining the plots, Joint Plot, Density Plot, Pair Plot
Language: Jupyter Notebook - Size: 324 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P09.-Probability-Calc-1
Find the probability that a normally distributed random variable has a mean of 60 and a standard deviation of 10 and we want to find the probability of x is less than 70.
Language: Jupyter Notebook - Size: 16.6 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Named_Entity_Recognition_Emotion_Mining
Named Entity Recognition , Emotion Mining in Python
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P08.-Box-Plot-Practice
Box Plot - using dataframe in pandas Inserting Minor and Major gridlines Deriving LQ, UQ, IQR, Upper Whisker and Lower Whisker length
Language: Jupyter Notebook - Size: 8.79 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Normal-Distribution
Normal-Distribution
Language: Jupyter Notebook - Size: 80.1 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Neural-Network_Back-Propagation
Model building and testing using NN Back Propagation
Language: Jupyter Notebook - Size: 14.6 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P02.-Pandas-2
Understanding Pandas, Groupby Function, Filtering Function
Language: Jupyter Notebook - Size: 9.77 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/NN_Hyperparameter-Tuning
Tuning of Hyperparameters :- Batch Size and Epochs. Tuning of Hyperparameters:- Learning rate and Drop out rate. Tuning of Hyperparameters:- Activation Function and Kernel Initializer. Tuning of Hyperparameter :-Number of Neurons in activation layer. Training model with optimum values of Hyperparameters.
Language: Jupyter Notebook - Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 2 - Forks: 1

vaitybharati/P03.-Pandas-3
Understanding Pandas, Visualization using Matplotlib, Plotting subplots
Language: Jupyter Notebook - Size: 61.5 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/P00.-Sample-Datasets
Sample Datasets Database for Data Science ML algorithms practice
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/mysql_null-commands
mysql_null-commands
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Students-table
Mysql-Students-table
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-date-time
Mysql-date-time
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Data-Manipulation
Mysql-Data-Manipulation
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-practice-tables
Mysql-practice-tables
Size: 4.88 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/mysql-create-drop-rename
mysql-create-drop-rename
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/ml Fork of KxSystems/ml
Machine-learning toolkit
Size: 47.1 MB - Last synced at: over 1 year ago - Pushed at: about 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Mysql-Alter-commands
Mysql-Alter-commands
Size: 1000 Bytes - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Matplotlip
MatPlotlib Python codes
Language: Jupyter Notebook - Size: 47.9 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0

vaitybharati/Multi-Linear-Reg
Multi-Linear-Reg
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 3 - Forks: 1

vaitybharati/Model-Validation-Methods
Model-Validation-Methods
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 1

vaitybharati/Logistic-Regression
Logistic-Regression
Language: Jupyter Notebook - Size: 1.95 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 1

vaitybharati/KNN
K Nearest Neighbours in Python
Language: Jupyter Notebook - Size: 2.93 KB - Last synced at: over 1 year ago - Pushed at: over 4 years ago - Stars: 1 - Forks: 0
