GitHub / Abdelrahman-Amen / VGG16-From-Scratch-and-Built_in
This project implements the powerful VGG-16 convolutional neural network for image classification, showcasing its efficiency with 3x3 filters, same padding, stride of 1, and 2x2 max-pooling for superior pattern recognition in diverse images.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Abdelrahman-Amen%2FVGG16-From-Scratch-and-Built_in
PURL: pkg:github/Abdelrahman-Amen/VGG16-From-Scratch-and-Built_in
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 117 KB
Dependencies parsed at: Pending
Created at: over 1 year ago
Updated at: over 1 year ago
Pushed at: over 1 year ago
Last synced at: 4 months ago
Topics: image-processing, keras, python, seaborn, skit-learn, tensorflow, vgg16