GitHub / Alqama-svg / optimal_execution_with_RL_Agent
Deep Reinforcement Learning for Optimal Trade Execution using DQN and Baseline Strategy Comparison
    JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Alqama-svg%2Foptimal_execution_with_RL_Agent
    PURL: pkg:github/Alqama-svg/optimal_execution_with_RL_Agent
  
        Stars: 0
        Forks: 0
        Open issues: 0
      
        License: mit
        Language: Jupyter Notebook
          Size: 672 KB
       Dependencies parsed at:           Pending
      
        Created at: 3 months ago
        Updated at: 2 months ago
          Pushed at: 2 months ago
          Last synced at: 2 months ago
      
Topics: algorithmic-trading, baseline-strategies, deep-learning, dqn, gym-environment, high-frequency-trading, neural-networks, optimal-execution, python, quantitative-finance, reinforcement-learning, research-and-development, stochastic-calculus