GitHub / Kisaa-Fatima / Genetic-Algorithm-Implementation-for-Intrusion-Detection-Using-UNSW-NB15-Dataset
The motivation behind this project is to explore the effectiveness of genetic algorithms in classifying network intrusions. By leveraging the UNSW-NB15 dataset and implementing GA, we aim to enhance intrusion detection systems.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Kisaa-Fatima%2FGenetic-Algorithm-Implementation-for-Intrusion-Detection-Using-UNSW-NB15-Dataset
PURL: pkg:github/Kisaa-Fatima/Genetic-Algorithm-Implementation-for-Intrusion-Detection-Using-UNSW-NB15-Dataset
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 18.6 KB
Dependencies parsed at: Pending
Created at: 11 months ago
Updated at: 4 months ago
Pushed at: 11 months ago
Last synced at: about 1 month ago
Topics: crossover, data-science, fitness-function, genetic-algorithm, mutation, optimization, parallelization, testing-data, training