GitHub / LGDiMaggio / Explainable-AI-for-Machine-Fault-Diagnosis
This project uses Explainable AI (XAI) to interpret machine learning models for diagnosing faults in industrial bearings. By applying SVM and kNN models and leveraging SHAP values, it enhances the transparency and reliability of machine learning in industrial condition monitoring.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/LGDiMaggio%2FExplainable-AI-for-Machine-Fault-Diagnosis
PURL: pkg:github/LGDiMaggio/Explainable-AI-for-Machine-Fault-Diagnosis
Stars: 0
Forks: 0
Open issues: 0
License: gpl-3.0
Language: Jupyter Notebook
Size: 5 MB
Dependencies parsed at: Pending
Created at: 11 months ago
Updated at: 11 months ago
Pushed at: 11 months ago
Last synced at: 11 months ago
Topics: bearing-fault-diagnosis, condition-monitoring, explainable-ai, knn, rotating-machinery-fault-diagnosis, shap-values, shapely, svm