An open API service providing repository metadata for many open source software ecosystems.

GitHub / Ljove02 / spacex-falcon9-analysis

The Falcon 9 Landing Success Prediction project predicts Falcon 9 first-stage landings using machine learning models like Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks. Key features include payload mass, orbit type, and booster reuse. Data is balanced with SMOTE for better accuracy.

JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Ljove02%2Fspacex-falcon9-analysis
PURL: pkg:github/Ljove02/spacex-falcon9-analysis

Stars: 0
Forks: 0
Open issues: 0

License: mit
Language: Jupyter Notebook
Size: 18.7 MB
Dependencies parsed at: Pending

Created at: 11 months ago
Updated at: 5 months ago
Pushed at: 5 months ago
Last synced at: 5 months ago

Topics: data-analysis-python, data-visualization, falcon9-spacex-landing, gradient-boosting, logistic-regression, machine-learning-models, neural-networks, random-forest, rocket-landing, simulation, smote, space-exploration, spacex

    Loading...