GitHub / MNitin-Reddy / A-B-Testing-and-Regression-Analysis-for-Ad-Performance-Optimization
Analyzed the performance of Facebook and AdWords ads using A/B testing and regression analysis to identify trends, correlations, and cost-effectiveness. Key insights included distribution of clicks and conversions, monthly trends, and cost-per-conversion analysis to optimize ROI.
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 1.33 MB
Dependencies parsed at: Pending
Created at: 5 months ago
Updated at: 5 months ago
Pushed at: 5 months ago
Last synced at: about 1 month ago
Topics: abtesting, data-science, hypothesis-testing, machine-learning, matplotlib, numpy, pandas, scikit-learn, scipy, seaborn, statsmodels