GitHub / Mehrab404 / AstroVAE-Variational-Autoencoder-for-Cosmological-Data-Compression
AstroVAE uses a Variational Autoencoder (VAE) to compress high-dimensional data from CAMELS cosmological simulations. It creates a compact, meaningful latent-space representation of complex astrophysical data, proving more effective at preserving critical scientific information than traditional methods.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Mehrab404%2FAstroVAE-Variational-Autoencoder-for-Cosmological-Data-Compression
PURL: pkg:github/Mehrab404/AstroVAE-Variational-Autoencoder-for-Cosmological-Data-Compression
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 3.59 MB
Dependencies parsed at: Pending
Created at: 25 days ago
Updated at: 25 days ago
Pushed at: 25 days ago
Last synced at: 24 days ago
Topics: image-processing, machine-learning, python, unet-pytorch, vae-implementation, variational-autoencoder