GitHub / PramodRawat157 / Data-Analysis-with-Python---IBM-Data-Science
To import data from multiple sources, clean and wrangle data, perform exploratory data analysis (EDA), and create meaningful data visualizations. I will then predict future trends from data by developing linear, multiple, polynomial regression models & pipelines and learn how to evaluate them.
    JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/PramodRawat157%2FData-Analysis-with-Python---IBM-Data-Science
    PURL: pkg:github/PramodRawat157/Data-Analysis-with-Python---IBM-Data-Science
  
        Stars: 0
        Forks: 1
        Open issues: 1
      
        License: gpl-3.0
        Language: Jupyter Notebook
          Size: 9.02 MB
       Dependencies parsed at:           Pending
      
        Created at: over 2 years ago
        Updated at: almost 2 years ago
          Pushed at: over 2 years ago
          Last synced at: almost 2 years ago
      
Commit Stats
      
        Commits: 20
        Authors: 1
        Mean commits per author: 20.0
        Development Distribution Score: 0.0
        More commit stats: https://commits.ecosyste.ms/hosts/GitHub/repositories/PramodRawat157/Data-Analysis-with-Python---IBM-Data-Science
      
    
Topics: dataanalysis, dataviz, datawrangling, googlecolab, hypothesis-tests, jupyter-notebook, linear-regression, matplotlib-pyplot, modeldevelopment, modelevaluation, numpy-arrays, pandas-dataframe, python3, refinement, scikitlearn-machine-learning, scipy, seaborn-plots, stastistical-sampling