GitHub / ZakirCodeArchitect / Intent-classifiers-on-regression-models
This project compares five optimization algorithms (GD, SGD, Momentum, RMSProp, and Adam) on Univariate Linear Regression and a neural network for Intent Classification with the ATIS dataset. It evaluates convergence speed, stability, and final loss, showing that Adam delivers the best performance across both models.
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 896 KB
Dependencies parsed at: Pending
Created at: 5 months ago
Updated at: 5 months ago
Pushed at: 5 months ago
Last synced at: 19 days ago
Topics: atis-dataset, intent-classification, jupyter-notebook, keras, keras-neural-networks, matplotlib, numpy, python, regression-models, tenserflow