GitHub / adityajain10 / human-detection-using-hog-lbp-neural-networks
The program uses HOG and LBP features to detect human in images. First, use the HOG feature only to detect humans. Next, combine the HOG feature with the LBP feature to form an augmented feature (HOG-LBP) to detect human. A Two-Layer Perceptron (feedforward neural network) will be used to classify the input feature vector into human or no-human.
Stars: 12
Forks: 4
Open issues: 0
License: None
Language: Python
Size: 1.72 MB
Dependencies parsed at: Pending
Created at: about 5 years ago
Updated at: about 1 year ago
Pushed at: almost 4 years ago
Last synced at: 11 months ago
Topics: detect-humans, feature-vector, gradient-angle, gradient-magnitude, hog-lbp, layer-perceptron, lbp-features, lbp-patterns, nueral-networks