GitHub / arkanivasarkar / EEG-Data-Augmentation-using-Variational-Autoencoder
Improving performance of motor imagery classification using variational-autoencoder and synthetic EEG signals
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/arkanivasarkar%2FEEG-Data-Augmentation-using-Variational-Autoencoder
PURL: pkg:github/arkanivasarkar/EEG-Data-Augmentation-using-Variational-Autoencoder
Stars: 44
Forks: 10
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 29.3 KB
Dependencies parsed at: Pending
Created at: almost 4 years ago
Updated at: about 2 months ago
Pushed at: 10 months ago
Last synced at: about 1 month ago
Topics: data-augmentation, eeg-signals, eegnet, keras, keras-tensorflow, motor-imagery-classification, synthetic-dataset-generation, variational-autoencoder