GitHub / aws-samples / amazon-sagemaker-xgboost-regression-model-hosting-on-aws-lambda-and-amazon-api-gateway
How to train a XGBoost regression model on Amazon SageMaker, host inference on a serverless function in AWS Lambda and optionally expose as an API with Amazon API Gateway
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/aws-samples%2Famazon-sagemaker-xgboost-regression-model-hosting-on-aws-lambda-and-amazon-api-gateway
PURL: pkg:github/aws-samples/amazon-sagemaker-xgboost-regression-model-hosting-on-aws-lambda-and-amazon-api-gateway
Stars: 4
Forks: 2
Open issues: 0
License: mit-0
Language: Jupyter Notebook
Size: 941 KB
Dependencies parsed at: Pending
Created at: about 4 years ago
Updated at: about 1 year ago
Pushed at: almost 4 years ago
Last synced at: 26 days ago
Topics: amazon-api-gateway, amazon-sagemaker, aws, aws-lambda, california-housing-price-prediction, jupyter-notebook, machine-learning, python3, xgboost-regression