GitHub / aws-samples / text-embeddings-pipeline-for-rag
A pipeline to convert contextual knowledge stored in documents and databases into text embeddings, and store them in a vector store
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/aws-samples%2Ftext-embeddings-pipeline-for-rag
PURL: pkg:github/aws-samples/text-embeddings-pipeline-for-rag
Stars: 16
Forks: 2
Open issues: 1
License: mit-0
Language: TypeScript
Size: 249 KB
Dependencies parsed at: Pending
Created at: almost 2 years ago
Updated at: 4 months ago
Pushed at: 5 months ago
Last synced at: 3 months ago
Topics: amazon-bedrock, aws, bedrock, cdk, dms, genai, generative-ai, lambda, langchain, large-language-models, pgvector, rag, rds, rds-postgres, retrieval-augmented-generation, s3, text-embeddings, vectordb