GitHub / beingujjwalraj / Multiscale-Modelling-of-Material-Using-Machine-Learning
This repository demonstrates multiscale modeling of copper heat pipes using machine learning, integrating grain-scale data with FEA via a UMAT. It highlights grain size’s impact on stress, strain, and heat transfer for optimized material design.
Stars: 1
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 9.33 MB
Dependencies parsed at: Pending
Created at: 7 months ago
Updated at: 6 months ago
Pushed at: 6 months ago
Last synced at: 6 months ago
Topics: abaqus, ansys, finite-element-analysis, fortran, hall-petch-effect, heattransfer, machine-learning, materialoptimization, multiscale-modeling, polynomialregression, stress-strain, umat, vpsc