An open API service providing repository metadata for many open source software ecosystems.

GitHub / hanyuanz2000 / Sparse-Gaussian-Process-for-Missing-Heart-Rate-Data-Imputation

Explores the application of Gaussian Process (GP) and sparse GP algorithms to handle missing heart rate time series dataset. Our findings emphasize the importance of kernel selection, specifically the RBF kernel, and the careful tuning of hyperparameters to achieve optimal performance in imputation tasks

JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/hanyuanz2000%2FSparse-Gaussian-Process-for-Missing-Heart-Rate-Data-Imputation
PURL: pkg:github/hanyuanz2000/Sparse-Gaussian-Process-for-Missing-Heart-Rate-Data-Imputation

Stars: 2
Forks: 1
Open issues: 0

License: None
Language: Jupyter Notebook
Size: 61 MB
Dependencies parsed at: Pending

Created at: over 2 years ago
Updated at: about 1 year ago
Pushed at: about 2 years ago
Last synced at: about 1 month ago

Topics: gaussian-processes, gpytorch, machine-learning, timeseries

    Loading...