GitHub / jayeshbhandarkar / Iris-Dataset-Prediction-using-Unsupervised-ML
Iris-Dataset-Prediction-using-Unsupervised-ML This project involves the analysis of the Iris dataset using Python. It includes code to determine the optimum number of clusters using the K-means clustering algorithm, visualizations such as scatter plot, pair plots and hist plots, and other insights into the dataset.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/jayeshbhandarkar%2FIris-Dataset-Prediction-using-Unsupervised-ML
PURL: pkg:github/jayeshbhandarkar/Iris-Dataset-Prediction-using-Unsupervised-ML
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 0 Bytes
Dependencies parsed at: Pending
Created at: over 1 year ago
Updated at: over 1 year ago
Pushed at: over 1 year ago
Last synced at: over 1 year ago
Topics: csv-file, data-analysis, data-visualization, dataframe, histogram, k-means-clustering, matplotlib, numpy, pairplot, pandas, python, scatterplot, seaborn, sklearn, unsupervised-machine-learning