GitHub / sameer-at-git / FastAPI-Implementation-with-Streamlit-on-IRIS-Dataset-to-Predict-Flower
A machine learning web application for predicting Iris flower species using FastAPI backend and Streamlit frontend. Features a pre-trained classifier (Random Forest Classifier), interactive UI with real-time predictions, RESTful API with automatic documentation, Data validation using Pydantic, and visual results display with flower images.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/sameer-at-git%2FFastAPI-Implementation-with-Streamlit-on-IRIS-Dataset-to-Predict-Flower
PURL: pkg:github/sameer-at-git/FastAPI-Implementation-with-Streamlit-on-IRIS-Dataset-to-Predict-Flower
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 28.8 MB
Dependencies parsed at: Pending
Created at: 21 days ago
Updated at: 11 days ago
Pushed at: 11 days ago
Last synced at: 11 days ago
Topics: fastapi, iris-dataset, pydantic, random-forest-classifier, streamlit