GitHub / singhsidhukuldeep / contextual-bandits
A comprehensive Python library implementing a variety of contextual and non-contextual multi-armed bandit algorithms—including LinUCB, Epsilon-Greedy, Upper Confidence Bound (UCB), Thompson Sampling, KernelUCB, NeuralLinearBandit, and DecisionTreeBandit—designed for reinforcement learning applications
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/singhsidhukuldeep%2Fcontextual-bandits
Stars: 6
Forks: 0
Open issues: 0
License: gpl-3.0
Language: Python
Size: 88.9 KB
Dependencies parsed at: Pending
Created at: 7 months ago
Updated at: about 1 month ago
Pushed at: 4 months ago
Last synced at: 17 days ago
Topics: algorithms, bandit-algorithms, contextual-bandits, epsilon-greedy, linucb, machine-learning, multi-armed-bandit, python, reinforcement-learning