GitHub / steveee27 / Autoencoder-for-Dimension-Reduction-in-Fashion-MNIST-Dataset
This project uses an Autoencoder for dimension reduction on the Fashion MNIST dataset, which contains grayscale clothing images. The goal is to reduce the 784-dimensional images (28x28) to a 128-dimensional latent space while reconstructing the images. The performance is evaluated using the Structural Similarity Index (SSIM).
Stars: 0
Forks: 0
Open issues: 0
License: mit
Language: Jupyter Notebook
Size: 666 KB
Dependencies parsed at: Pending
Created at: 4 months ago
Updated at: 4 months ago
Pushed at: 4 months ago
Last synced at: 3 months ago
Topics: autoencoder, deeplearning, dimensionreduction, fashionmnist, ssim