GitHub / Akaqox / unet-segmentation-with-docker
U-Net segmentation algorithm with options of pretrained resnet34 and resnet50 encoders. All of the project dockerized with gpu suppport on anaconda environment with multiple loss support..
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/Akaqox%2Funet-segmentation-with-docker
PURL: pkg:github/Akaqox/unet-segmentation-with-docker
Stars: 1
Forks: 0
Open issues: 0
License: None
Language: Python
Size: 19.5 KB
Dependencies parsed at:
201
Created at: 11 months ago
Updated at: 11 months ago
Pushed at: 11 months ago
Last synced at: 4 months ago
Topics: docker, docker-container, docker-image, dockerfile, image-processing, image-segmentation, leaf-disease-classification, multiple-loss-function, preprocessing, python, pytorch, pytorch-cnn, resnet, resnet34, resnet50, unet, unet-image-segmentation, unet-pytorch
- continuumio/miniconda3 latest build
- absl-py =2.1.0=pyhd8ed1ab_0
- aom =3.6.0=h6a678d5_0
- blas =1.0=mkl
- blosc =1.21.3=h6a678d5_0
- bottleneck =1.3.7=py311hf4808d0_0
- brotli =1.0.9=h5eee18b_8
- brotli-bin =1.0.9=h5eee18b_8
- brotli-python =1.0.9=py311h6a678d5_8
- brunsli =0.1=h2531618_0
- bzip2 =1.0.8=h5eee18b_6
- c-ares =1.19.1=h5eee18b_0
- ca-certificates =2024.7.4=hbcca054_0
- cairo =1.16.0=hb05425b_5
- certifi =2024.7.4=py311h06a4308_0
- cfitsio =3.470=h5893167_7
- charls =2.2.0=h2531618_0
- charset-normalizer =3.3.2=pyhd3eb1b0_0
- contourpy =1.2.0=py311hdb19cb5_0
- cuda-cudart =12.4.127=0
- cuda-cupti =12.4.127=0
- cuda-libraries =12.4.0=0
- cuda-nvrtc =12.4.127=0
- cuda-nvtx =12.4.127=0
- cuda-opencl =12.6.37=0
- cuda-runtime =12.4.0=0
- cuda-version =12.6=3
- cycler =0.11.0=pyhd3eb1b0_0
- cyrus-sasl =2.1.28=h52b45da_1
- dav1d =1.2.1=h5eee18b_0
- dbus =1.13.18=hb2f20db_0
- eigen =3.4.0=hdb19cb5_0
- expat =2.6.2=h6a678d5_0
- ffmpeg =4.2.2=h20bf706_0
- filelock =3.13.1=py311h06a4308_0
- fontconfig =2.14.1=h55d465d_3
- fonttools =4.51.0=py311h5eee18b_0
- freetype =2.12.1=h4a9f257_0
- giflib =5.2.1=h5eee18b_3
- glib =2.78.4=h6a678d5_0
- glib-tools =2.78.4=h6a678d5_0
- gmp =6.2.1=h295c915_3
- gmpy2 =2.1.2=py311hc9b5ff0_0
- gnutls =3.6.15=he1e5248_0
- graphite2 =1.3.14=h295c915_1
- grpcio =1.62.2=py311h6a678d5_0
- gst-plugins-base =1.14.1=h6a678d5_1
- gstreamer =1.14.1=h5eee18b_1
- harfbuzz =4.3.0=hf52aaf7_2
- hdf5 =1.12.1=h2b7332f_3
- icu =73.1=h6a678d5_0
- idna =3.7=py311h06a4308_0
- imagecodecs =2023.1.23=py311h8105a5c_0
- imageio =2.33.1=py311h06a4308_0
- importlib-metadata =8.3.0=pyha770c72_0
- intel-openmp =2023.1.0=hdb19cb5_46306
- jinja2 =3.1.4=py311h06a4308_0
- joblib =1.4.2=py311h06a4308_0
- jpeg =9e=h5eee18b_3
- jxrlib =1.1=h7b6447c_2
- kiwisolver =1.4.4=py311h6a678d5_0
- krb5 =1.20.1=h143b758_1
- lame =3.100=h7b6447c_0
- lazy_loader =0.4=py311h06a4308_0
- lcms2 =2.12=h3be6417_0
- ld_impl_linux-64 =2.38=h1181459_1
- lerc =3.0=h295c915_0
- libabseil =20240116.2=cxx17_h6a678d5_0
- libaec =1.0.4=he6710b0_1
- libavif =0.11.1=h5eee18b_0
- libbrotlicommon =1.0.9=h5eee18b_8
- libbrotlidec =1.0.9=h5eee18b_8
- libbrotlienc =1.0.9=h5eee18b_8
- libclang =14.0.6=default_hc6dbbc7_1
- libclang13 =14.0.6=default_he11475f_1
- libcublas =12.4.2.65=0
- libcufft =11.2.0.44=0
- libcufile =1.11.0.15=0
- libcups =2.4.2=h2d74bed_1
- libcurand =10.3.7.37=0
- libcurl =8.7.1=h251f7ec_0
- libcusolver =11.6.0.99=0
- libcusparse =12.3.0.142=0
- libdeflate =1.17=h5eee18b_1
- libedit =3.1.20230828=h5eee18b_0
- libev =4.33=h7f8727e_1
- libffi =3.4.4=h6a678d5_1
- libgcc-ng =14.1.0=h77fa898_0
- libgfortran-ng =11.2.0=h00389a5_1
- libgfortran5 =11.2.0=h1234567_1
- libglib =2.78.4=hdc74915_0
- libgomp =14.1.0=h77fa898_0
- libgrpc =1.62.2=h2d74bed_0
- libiconv =1.16=h5eee18b_3
- libidn2 =2.3.4=h5eee18b_0
- libjpeg-turbo =2.0.0=h9bf148f_0
- libllvm14 =14.0.6=hdb19cb5_3
- libnghttp2 =1.57.0=h2d74bed_0
- libnpp =12.2.5.2=0
- libnvfatbin =12.6.20=0
- libnvjitlink =12.4.99=0
- libnvjpeg =12.3.1.89=0
- libopus =1.3.1=h7b6447c_0
- libpng =1.6.39=h5eee18b_0
- libpq =12.17=hdbd6064_0
- libprotobuf =4.25.3=he621ea3_0
- libssh2 =1.11.0=h251f7ec_0
- libstdcxx-ng =14.1.0=hc0a3c3a_0
- libtasn1 =4.19.0=h5eee18b_0
- libtiff =4.5.1=h6a678d5_0
- libunistring =0.9.10=h27cfd23_0
- libuuid =1.41.5=h5eee18b_0
- libvpx =1.7.0=h439df22_0
- libwebp-base =1.3.2=h5eee18b_0
- libxcb =1.15=h7f8727e_0
- libxkbcommon =1.0.1=h097e994_2
- libxml2 =2.13.1=hfdd30dd_2
- libzopfli =1.0.3=he6710b0_0
- llvm-openmp =14.0.6=h9e868ea_0
- lz4-c =1.9.4=h6a678d5_1
- markdown =3.6=pyhd8ed1ab_0
- markupsafe =2.1.3=py311h5eee18b_0
- matplotlib =3.8.4=py311h06a4308_0
- matplotlib-base =3.8.4=py311ha02d727_0
- mkl =2023.1.0=h213fc3f_46344
- mkl-service =2.4.0=py311h5eee18b_1
- mkl_fft =1.3.8=py311h5eee18b_0
- mkl_random =1.2.4=py311hdb19cb5_0
- mpc =1.1.0=h10f8cd9_1
- mpfr =4.0.2=hb69a4c5_1
- mpmath =1.3.0=py311h06a4308_0
- mysql =5.7.24=h721c034_2
- ncurses =6.4=h6a678d5_0
- nettle =3.7.3=hbbd107a_1
- networkx =3.3=py311h06a4308_0
- numexpr =2.8.7=py311h65dcdc2_0
- numpy =1.26.4=py311h08b1b3b_0
- numpy-base =1.26.4=py311hf175353_0
- opencv =4.10.0=py311hab19f7d_0
- openh264 =2.1.1=h4ff587b_0
- openjpeg =2.5.2=he7f1fd0_0
- openssl =3.3.1=h4bc722e_2
- packaging =24.1=py311h06a4308_0
- pandas =2.2.2=py311ha02d727_0
- pcre2 =10.42=hebb0a14_1
- pillow =10.4.0=py311h5eee18b_0
- pip =24.2=py311h06a4308_0
- pixman =0.40.0=h7f8727e_1
- ply =3.11=py311h06a4308_0
- protobuf =4.25.3=py311h7b78aeb_0
- pybind11-abi =4=hd3eb1b0_1
- pyparsing =3.0.9=py311h06a4308_0
- pyqt =5.15.10=py311h6a678d5_0
- pyqt5-sip =12.13.0=py311h5eee18b_0
- pysocks =1.7.1=py311h06a4308_0
- python =3.11.9=h955ad1f_0
- python-dateutil =2.9.0post0=py311h06a4308_2
- python-tzdata =2023.3=pyhd3eb1b0_0
- python_abi =3.11=2_cp311
- pytorch =2.4.0=py3.11_cuda12.4_cudnn9.1.0_0
- pytorch-cuda =12.4=hc786d27_6
- pytorch-mutex =1.0=cuda
- pytz =2024.1=py311h06a4308_0
- pyyaml =6.0.1=py311h5eee18b_0
- qt-main =5.15.2=h53bd1ea_10
- re2 =2022.04.01=h27087fc_0
- readline =8.2=h5eee18b_0
- requests =2.32.3=py311h06a4308_0
- scikit-image =0.23.2=py311ha02d727_0
- scikit-learn =1.5.1=py311ha02d727_0
- scipy =1.13.1=py311h08b1b3b_0
- seaborn =0.13.2=py311h06a4308_0
- setuptools =72.1.0=py311h06a4308_0
- sip =6.7.12=py311h6a678d5_0
- six =1.16.0=pyhd3eb1b0_1
- snappy =1.2.1=h6a678d5_0
- sqlite =3.45.3=h5eee18b_0
- sympy =1.12=py311h06a4308_0
- tbb =2021.8.0=hdb19cb5_0
- tensorboard =2.17.1=pyhd8ed1ab_0
- tensorboard-data-server =0.7.0=py311h63ff55d_1
- threadpoolctl =3.5.0=py311h92b7b1e_0
- tifffile =2023.4.12=py311h06a4308_0
- tk =8.6.14=h39e8969_0
- torchaudio =2.4.0=py311_cu124
- torchtriton =3.0.0=py311
- torchvision =0.19.0=py311_cu124
- tornado =6.4.1=py311h5eee18b_0
- typing_extensions =4.11.0=py311h06a4308_0
- tzdata =2024a=h04d1e81_0
- unicodedata2 =15.1.0=py311h5eee18b_0
- urllib3 =2.2.2=py311h06a4308_0
- werkzeug =3.0.3=pyhd8ed1ab_0
- wheel =0.43.0=py311h06a4308_0
- x264 =1
- xz =5.4.6=h5eee18b_1
- yaml =0.2.5=h7b6447c_0
- zfp =1.0.0=h6a678d5_0
- zipp =3.20.0=pyhd8ed1ab_0
- zlib =1.2.13=h5eee18b_1
- zstd =1.5.5=hc292b87_2