GitHub / jcsaputra / Comparative-Performance-of-Regression-Models-for-Avocado-Sales-Forecasting-machine-learning-python
Evaluation and comparison of Random Forest, Multiple Linear, and Polynomial regression models for predicting avocado sales volume in the USA, focusing on accuracy and model performance using historical sales data.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/jcsaputra%2FComparative-Performance-of-Regression-Models-for-Avocado-Sales-Forecasting-machine-learning-python
PURL: pkg:github/jcsaputra/Comparative-Performance-of-Regression-Models-for-Avocado-Sales-Forecasting-machine-learning-python
Stars: 0
Forks: 0
Open issues: 0
License: None
Language: Jupyter Notebook
Size: 4.07 MB
Dependencies parsed at:
0
Created at: 7 months ago
Updated at: 7 months ago
Pushed at: 7 months ago
Last synced at: 9 days ago
Topics: avocado, jupyter-notebook, linear-regression, machine-learning, machine-learning-algorithms, multiple, polynomial-regression, preprocessing, python, random-forest, sales
No dependencies found