GitHub / nicholasjclark / physalia-forecasting-course
Ecological forecasting using Dynamic Generalized Additive Models with R 📦's {mvgam} and {brms}
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/nicholasjclark%2Fphysalia-forecasting-course
PURL: pkg:github/nicholasjclark/physalia-forecasting-course
Stars: 41
Forks: 11
Open issues: 2
License: None
Language: HTML
Size: 400 MB
Dependencies parsed at: Pending
Created at: about 2 years ago
Updated at: 15 days ago
Pushed at: 4 months ago
Last synced at: 3 days ago
Commit Stats
Commits: 86
Authors: 1
Mean commits per author: 86.0
Development Distribution Score: 0.0
More commit stats: https://commits.ecosyste.ms/hosts/GitHub/repositories/nicholasjclark/physalia-forecasting-course
Topics: brms, ecological-modelling, forecasting, generalised-additive-models, generalised-linear-models, generalized-additive-models, mgcv, multilevel-models, mvgam, stan, time-series-analysis, vector-autoregression