GitHub / rkc007 / AlphaGo-Zero-Implementation-Using-Reinforcement-Learning
This is my implementation of the DeepMind's AlphaZero algorithm for the Game of Go
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/rkc007%2FAlphaGo-Zero-Implementation-Using-Reinforcement-Learning
PURL: pkg:github/rkc007/AlphaGo-Zero-Implementation-Using-Reinforcement-Learning
Stars: 7
Forks: 2
Open issues: 6
License: None
Language: Python
Size: 50.8 KB
Dependencies parsed at:
28
Created at: about 5 years ago
Updated at: about 1 year ago
Pushed at: over 2 years ago
Last synced at: 2 months ago
Topics: alphago, deepmind, deepmind-alphazero-algorithm, game, mcts, monte-carlo-tree-search, reinforcement-learning, reinforcement-learning-agent
- Pygments ==2.4.2
- appnope ==0.1.0
- backcall ==0.1.0
- cloudpickle ==1.2.2
- decorator ==4.4.1
- future ==0.18.2
- gym ==0.15.3
- ipython ==7.9.0
- ipython-genutils ==0.2.0
- jedi ==0.15.1
- numpy ==1.17.3
- pachi-py ==0.0.21
- parso ==0.5.1
- pexpect ==4.7.0
- pickleshare ==0.7.5
- prompt-toolkit ==2.0.10
- protobuf ==3.10.0
- ptyprocess ==0.6.0
- pyglet ==1.3.2
- scipy ==1.3.1
- six ==1.13.0
- tensorboard ==1.14.0
- tensorflow ==2.3.1
- torch ==1.3.1
- torchsummary ==1.5.1
- torchvision ==0.4.0
- traitlets ==4.3.3
- wcwidth ==0.1.7