GitHub topics: interpretable-machine-learning
innoisys/epu-cnn-torch
This is a PyTorch implementation of "E pluribus unum interpretable convolutional neural networks"
Language: Python - Size: 408 KB - Last synced at: 2 days ago - Pushed at: 2 days ago - Stars: 1 - Forks: 0

interpretml/interpret
Fit interpretable models. Explain blackbox machine learning.
Language: C++ - Size: 14.7 MB - Last synced at: 1 day ago - Pushed at: 16 days ago - Stars: 6,483 - Forks: 746

KevinBian107/L-CTP-MVP
MVP repository for L-CTP
Language: Python - Size: 8.42 MB - Last synced at: 3 days ago - Pushed at: 3 days ago - Stars: 0 - Forks: 0

ModelOriented/DALEX
moDel Agnostic Language for Exploration and eXplanation
Language: Python - Size: 798 MB - Last synced at: about 23 hours ago - Pushed at: 3 months ago - Stars: 1,420 - Forks: 168

mmschlk/shapiq
Shapley Interactions and Shapley Values for Machine Learning
Language: Python - Size: 309 MB - Last synced at: 4 days ago - Pushed at: 4 days ago - Stars: 514 - Forks: 34

arthur-batel/IMPACT
Repository contaning the original code of IMPACT algorithm, an interpretable model for multi-target predictions with multi-class outputs"
Language: Jupyter Notebook - Size: 17.9 MB - Last synced at: 4 days ago - Pushed at: 4 days ago - Stars: 6 - Forks: 0

pyladiesams/ai-in-finance-python-lecture-beginner-may2022
AI in Finance - Python interactive lecture for students studying Finance
Language: Jupyter Notebook - Size: 1.88 MB - Last synced at: 3 days ago - Pushed at: 4 days ago - Stars: 4 - Forks: 3

SelfExplainML/PiML-Toolbox
PiML (Python Interpretable Machine Learning) toolbox for model development & diagnostics
Language: Jupyter Notebook - Size: 250 MB - Last synced at: 4 days ago - Pushed at: about 1 month ago - Stars: 1,247 - Forks: 127

IBM/AutoPeptideML
AutoML system for building trustworthy peptide bioactivity predictors
Language: Python - Size: 48.7 MB - Last synced at: 4 days ago - Pushed at: 22 days ago - Stars: 28 - Forks: 2

bgreenwell/ebm
Explainable Boosting Machines
Language: R - Size: 44.5 MB - Last synced at: 3 days ago - Pushed at: 2 months ago - Stars: 3 - Forks: 1

Trustworthy-ML-Lab/ThinkEdit
An effective weight-editing method for mitigating overly short reasoning in LLMs, and a mechanistic study uncovering how reasoning length is encoded in the model’s representation space.
Language: Python - Size: 545 KB - Last synced at: 7 days ago - Pushed at: 7 days ago - Stars: 10 - Forks: 1

lopusz/awesome-interpretable-machine-learning
Language: Python - Size: 1.47 MB - Last synced at: 5 days ago - Pushed at: about 2 years ago - Stars: 916 - Forks: 139

JHoelli/Awesome-Time-Series-Explainability
A list of (post-hoc) XAI for time series
Size: 424 KB - Last synced at: 9 days ago - Pushed at: 8 months ago - Stars: 134 - Forks: 16

interpretml/DiCE
Generate Diverse Counterfactual Explanations for any machine learning model.
Language: Python - Size: 15.2 MB - Last synced at: 12 days ago - Pushed at: 6 months ago - Stars: 1,397 - Forks: 200

salesforce/OmniXAI
OmniXAI: A Library for eXplainable AI
Language: Jupyter Notebook - Size: 64.7 MB - Last synced at: 12 days ago - Pushed at: 10 months ago - Stars: 916 - Forks: 100

ssfgunner/IIS
[ICLR 2025 Spotlight] This is the official repository for our paper: ''Enhancing Pre-trained Representation Classifiability can Boost its Interpretability''.
Language: Python - Size: 2.89 MB - Last synced at: 14 days ago - Pushed at: 14 days ago - Stars: 15 - Forks: 0

zju-vipa/awesome-neural-trees
Introduction, selected papers and possible corresponding codes in our review paper "A Survey of Neural Trees"
Size: 1.66 MB - Last synced at: 1 day ago - Pushed at: over 2 years ago - Stars: 78 - Forks: 9

MarcelRobeer/explabox
Explore/examine/explain/expose your model with the explabox!
Language: Python - Size: 3.03 MB - Last synced at: 15 days ago - Pushed at: 15 days ago - Stars: 16 - Forks: 0

M-Nauta/ProtoTree
ProtoTrees: Neural Prototype Trees for Interpretable Fine-grained Image Recognition, published at CVPR2021
Language: Python - Size: 870 KB - Last synced at: 2 days ago - Pushed at: almost 3 years ago - Stars: 101 - Forks: 21

jphall663/awesome-machine-learning-interpretability
A curated list of awesome responsible machine learning resources.
Size: 4.45 MB - Last synced at: 16 days ago - Pushed at: 23 days ago - Stars: 3,770 - Forks: 599

ModelOriented/kernelshap
Different SHAP algorithms
Language: R - Size: 2.5 MB - Last synced at: 7 days ago - Pushed at: about 1 month ago - Stars: 47 - Forks: 7

roycmeghna/I-HOPE
I-HOPE — Interpretable Hierarchical mOdel for Personalized mEntal Health Prediction
Language: Python - Size: 97.7 KB - Last synced at: 17 days ago - Pushed at: 17 days ago - Stars: 0 - Forks: 0

mf-wu/HiBoFL
Hierarchy-boosted funnel learning for identifying semiconductors with ultralow lattice thermal conductivity
Language: Python - Size: 6.6 MB - Last synced at: 17 days ago - Pushed at: 17 days ago - Stars: 2 - Forks: 0

fzi-forschungszentrum-informatik/TSInterpret
An Open-Source Library for the interpretability of time series classifiers
Language: Python - Size: 200 MB - Last synced at: 8 days ago - Pushed at: 6 months ago - Stars: 133 - Forks: 14

ModelOriented/modelStudio
📍 Interactive Studio for Explanatory Model Analysis
Language: R - Size: 36.2 MB - Last synced at: 8 days ago - Pushed at: over 1 year ago - Stars: 332 - Forks: 32

ModelOriented/treeshap
Compute SHAP values for your tree-based models using the TreeSHAP algorithm
Language: R - Size: 19.7 MB - Last synced at: 13 days ago - Pushed at: 10 months ago - Stars: 84 - Forks: 24

ottenbreit-data-science/aplr
APLR builds predictive, interpretable regression and classification models using Automatic Piecewise Linear Regression. It often rivals tree-based methods in predictive accuracy while offering smoother and interpretable predictions.
Language: C++ - Size: 6.13 MB - Last synced at: 23 days ago - Pushed at: 23 days ago - Stars: 17 - Forks: 4

Cassie818/MsaPhylo
Learning the language of phylogeny with MSA Transformer
Language: Jupyter Notebook - Size: 40 MB - Last synced at: 24 days ago - Pushed at: 25 days ago - Stars: 1 - Forks: 0

DebeshJha/MDNet
Abdominal Organ Segmentation using Multi Decoder Network (MDNet) [Accepted at ICASSP 2025]
Language: Python - Size: 1.6 MB - Last synced at: 25 days ago - Pushed at: 25 days ago - Stars: 7 - Forks: 1

sergioburdisso/pyss3
A Python package implementing a new interpretable machine learning model for text classification (with visualization tools for Explainable AI :octocat:)
Language: Python - Size: 102 MB - Last synced at: about 15 hours ago - Pushed at: 4 months ago - Stars: 341 - Forks: 44

idealo/cnn-exposed 📦
🕵️♂️ Interpreting Convolutional Neural Network (CNN) Results.
Language: Jupyter Notebook - Size: 69.6 MB - Last synced at: 9 days ago - Pushed at: 5 months ago - Stars: 177 - Forks: 30

medoidai/interpretable-machine-learning-blog-notebooks
Notebook examples from "A Practical Overview of Interpretable Machine Learning" blog post.
Language: Jupyter Notebook - Size: 3.05 MB - Last synced at: 5 days ago - Pushed at: almost 3 years ago - Stars: 6 - Forks: 0

hbaniecki/compress-then-explain
Efficient and accurate explanation estimation with distribution compression (ICLR 2025 Spotlight)
Language: Python - Size: 1.25 MB - Last synced at: 29 days ago - Pushed at: 3 months ago - Stars: 7 - Forks: 1

explainX/explainx
Explainable AI framework for data scientists. Explain & debug any blackbox machine learning model with a single line of code. We are looking for co-authors to take this project forward. Reach out @ [email protected]
Language: Jupyter Notebook - Size: 61.3 MB - Last synced at: 28 days ago - Pushed at: 9 months ago - Stars: 430 - Forks: 56

pbiecek/xai_resources
Interesting resources related to XAI (Explainable Artificial Intelligence)
Language: R - Size: 13.2 MB - Last synced at: 28 days ago - Pushed at: almost 3 years ago - Stars: 825 - Forks: 138

gully/blase
Interpretable Machine Learning for astronomical spectroscopy in PyTorch and JAX
Language: Jupyter Notebook - Size: 28.9 MB - Last synced at: 25 days ago - Pushed at: 10 months ago - Stars: 27 - Forks: 7

ModelOriented/survex
Explainable Machine Learning in Survival Analysis
Language: R - Size: 309 MB - Last synced at: 5 days ago - Pushed at: 11 months ago - Stars: 111 - Forks: 10

solegalli/machine-learning-interpretability
Code repository for the online course Machine Learning Interpretability
Language: Jupyter Notebook - Size: 23.9 MB - Last synced at: 25 days ago - Pushed at: 7 months ago - Stars: 26 - Forks: 18

jrieke/cnn-interpretability
🏥 Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer’s Disease
Language: Jupyter Notebook - Size: 61.5 MB - Last synced at: 4 days ago - Pushed at: almost 6 years ago - Stars: 170 - Forks: 50

pietrobarbiero/pytorch_explain
PyTorch Explain: Interpretable Deep Learning in Python.
Language: Jupyter Notebook - Size: 42.1 MB - Last synced at: about 1 month ago - Pushed at: 12 months ago - Stars: 154 - Forks: 14

daikikatsuragawa/awesome-counterfactual-explanations
This repository is a curated collection of information (keywords, papers, libraries, books, etc.) about counterfactual explanations🙃 Contributions are welcome! Our maintenance capacity is limited, so we highly appreciate pull requests.
Size: 12.7 KB - Last synced at: 5 days ago - Pushed at: over 2 years ago - Stars: 18 - Forks: 0

jphall663/interpretable_machine_learning_with_python
Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
Language: Jupyter Notebook - Size: 34.7 MB - Last synced at: 28 days ago - Pushed at: 11 months ago - Stars: 676 - Forks: 207

nredell/ShapML.jl
A Julia package for interpretable machine learning with stochastic Shapley values
Language: Julia - Size: 529 KB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 90 - Forks: 8

vam-sin/riboclette
Transformers for ribosome density prediction
Language: Jupyter Notebook - Size: 137 MB - Last synced at: about 1 month ago - Pushed at: about 1 month ago - Stars: 0 - Forks: 0

Graph-COM/GSAT
[ICML 2022] Graph Stochastic Attention (GSAT) for interpretable and generalizable graph learning.
Language: Jupyter Notebook - Size: 1.57 MB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 167 - Forks: 22

Shakti-95/Data-and-Codes-for-Integrated-Design-Framework-for-Titanium-Aluminides-Through-Interpretable-ML
Data and Codes for Integrated Design Framework for Titanium Aluminides Through Interpretable Machine Learning
Language: Jupyter Notebook - Size: 30.9 MB - Last synced at: about 1 month ago - Pushed at: about 1 month ago - Stars: 0 - Forks: 0

salesforce/ETSformer
PyTorch code for ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Language: Python - Size: 459 KB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 274 - Forks: 44

pyartemis/artemis
A Python package with explanation methods for extraction of feature interactions from predictive models
Language: Jupyter Notebook - Size: 16.6 MB - Last synced at: 5 days ago - Pushed at: over 1 year ago - Stars: 30 - Forks: 0

hbaniecki/adversarial-explainable-ai
💡 Adversarial attacks on explanations and how to defend them
Size: 2.62 MB - Last synced at: about 2 months ago - Pushed at: 5 months ago - Stars: 314 - Forks: 48

sbartlett97/model-understanding
Playing around with understanding how different tokens affect the generation in LLMs
Language: Python - Size: 48.8 KB - Last synced at: about 1 month ago - Pushed at: about 2 months ago - Stars: 0 - Forks: 0

tpoisot/InterpretableSDMWithJulia
Slides for the "Interpretable SDM with Julia" workshop
Language: TeX - Size: 268 MB - Last synced at: 28 days ago - Pushed at: 6 months ago - Stars: 5 - Forks: 2

doncamilom/QuiremaTGADecomp
Decompose Thermo Gravimetrical Analysis (TGA) curves into simpler logistic curves representing mass-change events with a chemical interpretation. All of the analysis is performed with the TensorFlow library for the creation of a NN-analogous model and optimization.
Language: Jupyter Notebook - Size: 52.2 MB - Last synced at: about 2 months ago - Pushed at: over 4 years ago - Stars: 0 - Forks: 0

imatge-upc/SurvLIMEpy
Local interpretability for survival models
Language: Python - Size: 3.7 MB - Last synced at: 28 days ago - Pushed at: 12 months ago - Stars: 24 - Forks: 4

cair/convolutional-tsetlin-machine-tutorial
Tutorial on the Convolutional Tsetlin Machine
Language: Python - Size: 316 KB - Last synced at: 27 days ago - Pushed at: over 4 years ago - Stars: 53 - Forks: 13

alan-turing-institute/Intro-to-transparent-ML-course
An Introduction to Transparent Machine Learning
Language: Jupyter Notebook - Size: 17.6 MB - Last synced at: 5 days ago - Pushed at: over 1 year ago - Stars: 13 - Forks: 2

fbargaglistoffi/BCF-IV
Package for heterogeneous causal effects in the presence of imperfect compliance (e.g., instrumental variables, fuzzy regression discontinuity designs)
Language: R - Size: 1.45 MB - Last synced at: 29 days ago - Pushed at: about 1 year ago - Stars: 16 - Forks: 4

JBris/seldon-testing
Testing MLServer and Alibi
Language: Jupyter Notebook - Size: 4.7 MB - Last synced at: 2 months ago - Pushed at: 2 months ago - Stars: 1 - Forks: 0

FarnoushRJ/SymbolicXAI
Official Implementation of the Paper "Towards symbolic XAI – explanation through human understandable logical relationships between features"
Language: Jupyter Notebook - Size: 3.91 KB - Last synced at: 2 months ago - Pushed at: 2 months ago - Stars: 0 - Forks: 0

si-cim/cbc-aaai-2025
Deep CBC Models for Prototype Based Interpretability Benchmarks
Language: Python - Size: 1.65 MB - Last synced at: about 2 months ago - Pushed at: 2 months ago - Stars: 0 - Forks: 0

Klest94/Bellatrex
Building Explanations through a LocaLly AccuraTe Rule EXtractor
Language: Jupyter Notebook - Size: 215 MB - Last synced at: 5 days ago - Pushed at: 6 months ago - Stars: 10 - Forks: 2

gianlucatruda/quantified-sleep
Quantified Sleep: Machine learning techniques for observational n-of-1 studies.
Language: Jupyter Notebook - Size: 11.1 MB - Last synced at: 10 days ago - Pushed at: almost 4 years ago - Stars: 46 - Forks: 2

Animadversio/Neuronal_Feature_Attribution_Model
Feature Attribution methods for neurons and Evolution experiments
Language: Jupyter Notebook - Size: 4.13 MB - Last synced at: 2 months ago - Pushed at: 2 months ago - Stars: 0 - Forks: 0

Henrymachiyu/ProtoViT
This code implements ProtoViT, a novel approach that combines Vision Transformers with prototype-based learning to create interpretable image classification models. Our implementation provides both high accuracy and explainability through learned prototypes.
Language: Python - Size: 1010 KB - Last synced at: 2 months ago - Pushed at: 2 months ago - Stars: 17 - Forks: 6

mertkosan/GCFExplainer
Global Counterfactual Explainer for Graph Neural Networks
Language: Python - Size: 16.3 MB - Last synced at: about 2 months ago - Pushed at: about 2 years ago - Stars: 18 - Forks: 4

firmai/ml-fairness-framework
FairPut - Machine Learning Fairness Framework with LightGBM — Explainability, Robustness, Fairness (by @firmai)
Language: Jupyter Notebook - Size: 10.5 MB - Last synced at: 4 days ago - Pushed at: over 3 years ago - Stars: 71 - Forks: 16

schalkdaniel/compboost
C++ implementation and R API for componentwise boosting
Language: C++ - Size: 203 MB - Last synced at: about 6 hours ago - Pushed at: about 2 years ago - Stars: 23 - Forks: 3

rachtibat/zennit-crp
An eXplainable AI toolkit with Concept Relevance Propagation and Relevance Maximization
Language: Jupyter Notebook - Size: 17.9 MB - Last synced at: 21 days ago - Pushed at: 11 months ago - Stars: 124 - Forks: 18

MarekWadinger/adaptive-interpretable-ad
Self-Supervised Adaptive and Interpretable Anomaly Detection with Dynamic Operating Limits
Language: Python - Size: 158 MB - Last synced at: 2 months ago - Pushed at: 2 months ago - Stars: 5 - Forks: 0

Assaoka/Assaoka
Size: 38.1 KB - Last synced at: 8 days ago - Pushed at: 8 days ago - Stars: 5 - Forks: 0

runstats21/college-score-card-analysis
Language: Jupyter Notebook - Size: 39.6 MB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 0 - Forks: 0

dylan-slack/TalkToModel
TalkToModel gives anyone with the powers of XAI through natural language conversations 💬!
Language: Python - Size: 10.1 MB - Last synced at: 28 days ago - Pushed at: almost 2 years ago - Stars: 120 - Forks: 25

bgreenwell/fastshap
Fast approximate Shapley values in R
Language: R - Size: 99.4 MB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 119 - Forks: 18

jobregon1212/rulecosi
RuleCOSI is a machine learning package that combine and simplifies tree ensembles and generates a single rule-based classifier that is smaller and simpler.
Language: Python - Size: 173 KB - Last synced at: 2 months ago - Pushed at: 4 months ago - Stars: 8 - Forks: 2

deepfx/netlens
A toolkit for interpreting and analyzing neural networks (vision)
Language: Jupyter Notebook - Size: 130 MB - Last synced at: 6 days ago - Pushed at: almost 5 years ago - Stars: 26 - Forks: 2

davideferrari92/multiobjective_symbolic_regression
This is a Python library that implements a Multi-objective Symbolic Regression algorithm. It can be used as a Machine Learning algorithm to create predictive models in the form of mathematical expressions.
Language: Python - Size: 1.1 MB - Last synced at: about 1 month ago - Pushed at: 6 months ago - Stars: 17 - Forks: 5

adaamko/POTATO
XAI based human-in-the-loop framework for automatic rule-learning.
Language: Jupyter Notebook - Size: 6.07 MB - Last synced at: 7 days ago - Pushed at: 10 months ago - Stars: 48 - Forks: 8

donlapark/XLabel
XLabel: An Explainable Data Labeling Assistant
Language: Jupyter Notebook - Size: 2.84 MB - Last synced at: 3 days ago - Pushed at: about 2 years ago - Stars: 7 - Forks: 2

CPS-research-group/dtsemnet
Implementation of DTSemNet Architecture
Language: Python - Size: 40.6 MB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 4 - Forks: 0

jphall663/diabetes_use_case
Sample use case for Xavier AI in Healthcare conference: https://www.xavierhealth.org/ai-summit-day2/
Language: Jupyter Notebook - Size: 73.7 MB - Last synced at: about 1 month ago - Pushed at: 11 months ago - Stars: 27 - Forks: 13

ananthu-aniraj/pdiscoformer
[ECCV 2024 Oral] Official implementation of the paper "PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers"
Language: Python - Size: 383 KB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 9 - Forks: 1

khalooei/LSA
LSA : Layer Sustainability Analysis framework for the analysis of layer vulnerability in a given neural network. LSA can be a helpful toolkit to assess deep neural networks and to extend the adversarial training approaches towards improving the sustainability of model layers via layer monitoring and analysis.
Language: Python - Size: 33.8 MB - Last synced at: 16 days ago - Pushed at: about 3 years ago - Stars: 17 - Forks: 6

fbargaglistoffi/NetworkCausalTree
Package for heterogeneous treatment and spillover effects under network interference
Language: R - Size: 1.81 MB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 7 - Forks: 3

keiserlab/plaquebox-paper
Repo for Tang et al, bioRxiv 454793 (2018)
Language: Jupyter Notebook - Size: 31.6 MB - Last synced at: about 1 month ago - Pushed at: about 6 years ago - Stars: 41 - Forks: 25

nredell/shapFlex
An R package for computing asymmetric Shapley values to assess causality in any trained machine learning model
Language: R - Size: 2.13 MB - Last synced at: 28 days ago - Pushed at: almost 5 years ago - Stars: 74 - Forks: 7

vanlalpeka/interpretable_AI
Exploring AI/ML/Data-science concepts
Language: Jupyter Notebook - Size: 771 KB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 0 - Forks: 0

TouradBaba/model_engineering
This repository hosts a machine learning tool for breast cancer classification, emphasizing model interpretability. It is deployed on Streamlit Cloud, with a PostgreSQL database for tracking results and data drift, and includes an automated retraining workflow.
Language: Jupyter Notebook - Size: 12.7 MB - Last synced at: 3 months ago - Pushed at: 4 months ago - Stars: 0 - Forks: 0

NielsenErik/Coach-QD-MARL
Interpretable Multi Agent Reinforcement Learning with a Quality DIversity Approach
Language: Python - Size: 964 MB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 0 - Forks: 0

pykale/transparentML
An Introduction to Transparent Machine Learning
Language: Jupyter Notebook - Size: 186 MB - Last synced at: about 1 month ago - Pushed at: over 1 year ago - Stars: 11 - Forks: 12

Linn39/gait_cnn
Repo to analyze time series data with Convolutional Neural Network (CNN) and use explainable AI methods to visualize feature importance.
Language: Python - Size: 1.51 MB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 0 - Forks: 1

aminaghoul/TrajDCM
Size: 683 KB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 2 - Forks: 0

thiswillbeyourgithub/repeng Fork of vgel/repeng
Repeng Research Fork - A library for making RepE control vectors
Language: Jupyter Notebook - Size: 392 KB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 2 - Forks: 0

cair/pyTsetlinMachineParallel
Multi-threaded implementation of the Tsetlin Machine, Convolutional Tsetlin Machine, Regression Tsetlin Machine, and Weighted Tsetlin Machine, with support for continuous features and multigranularity.
Language: C - Size: 290 KB - Last synced at: 27 days ago - Pushed at: over 2 years ago - Stars: 41 - Forks: 9

jphall663/jsm_2018_paper
Paper for 2018 Joint Statistical Meetings: https://ww2.amstat.org/meetings/jsm/2018/onlineprogram/AbstractDetails.cfm?abstractid=329539
Language: TeX - Size: 12.7 MB - Last synced at: about 1 month ago - Pushed at: over 6 years ago - Stars: 9 - Forks: 2

RishiDarkDevil/daam-i2i Fork of castorini/daam
Diffusion attentive attribution maps for interpreting Stable Diffusion for image-to-image attention.
Language: Python - Size: 30.3 MB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 49 - Forks: 1

deezer/functional_attribution
Code of our accepted ICML 2021 paper "Towards Rigorous Interpretations: a Formalisation of Feature Attribution" (D. Afchar, R. Hennequin, V. Guigue)
Language: Python - Size: 1.3 MB - Last synced at: about 1 month ago - Pushed at: almost 4 years ago - Stars: 7 - Forks: 1

alexanderepstein/NAVE
News Authentication Via Emotion
Language: Jupyter Notebook - Size: 26.8 MB - Last synced at: 3 months ago - Pushed at: over 2 years ago - Stars: 1 - Forks: 0

EloiZ/awesome-contrastive-explanation
A curated list of awesome contrastive explanation in ML resources
Size: 18.6 KB - Last synced at: 4 days ago - Pushed at: about 5 years ago - Stars: 4 - Forks: 0

SinaMohseni/Awesome-XAI-Evaluation
Reference tables to introduce and organize evaluation methods and measures for explainable machine learning systems
Size: 251 KB - Last synced at: 6 days ago - Pushed at: about 3 years ago - Stars: 74 - Forks: 10

tlverse/causalglm
Interpretable and model-robust causal inference for heterogeneous treatment effects using generalized linear working models with targeted machine-learning
Language: R - Size: 7.27 MB - Last synced at: about 2 months ago - Pushed at: about 3 years ago - Stars: 24 - Forks: 0

conorosully/interpreting-coastline-unet
Interpreting a U-Net used for coastal water body segmentation using permutation importance
Language: Jupyter Notebook - Size: 27.8 MB - Last synced at: 5 months ago - Pushed at: 5 months ago - Stars: 2 - Forks: 0
