An open API service providing repository metadata for many open source software ecosystems.

GitHub topics: multi-spectral

Pale-Blue-Dot-97/Minerva

Minerva project includes the minerva package that aids in the fitting and testing of neural network models. Includes pre and post-processing of land cover data. Designed for use with torchgeo datasets.

langage: Python - taille: 32,8 Mo - dernière synchronisation: il y a 10 jours - enregistré: il y a 10 jours - étoiles: 21 - forks: 1

ESA-PhiLab/Major-TOM

Expandable Datasets for Earth Observation

langage: Jupyter Notebook - taille: 8,82 Mo - dernière synchronisation: il y a environ 2 mois - enregistré: il y a 4 mois - étoiles: 176 - forks: 12

hong-chen/ssfr

SSFR Software Package

langage: Python - taille: 15,8 Mo - dernière synchronisation: il y a 3 mois - enregistré: il y a 3 mois - étoiles: 1 - forks: 0

arthurdjn/colorply 📦

Project made at the IGN research center, for multispectral photogrammetry.

langage: Jupyter Notebook - taille: 119 Mo - dernière synchronisation: il y a 3 jours - enregistré: il y a plus de 4 ans - étoiles: 3 - forks: 0

JianchaoTan/Pigmento-PaintingAnalysis

Pigment based painting analysis and editing

langage: Python - taille: 56,5 Mo - dernière synchronisation: il y a 3 mois - enregistré: il y a plus de 6 ans - étoiles: 21 - forks: 8

restlessronin/fastgs

Geospatial (Sentinel2 Multi-Spectral) support for fastai

langage: Jupyter Notebook - taille: 62,5 Mo - dernière synchronisation: il y a environ 2 mois - enregistré: il y a plus de 2 ans - étoiles: 6 - forks: 0

Heikelol/Hiperespectrales

eCognition algorithm based in multi-spectral luminosity and shape for classifying weeds.

taille: 13,9 Mo - dernière synchronisation: il y a plus d'un an - enregistré: il y a presque 4 ans - étoiles: 2 - forks: 1

Heikelol/SegmentationForPlants

eCognition algorithm based in multi-spectral luminosity and shape for classifying weeds.

taille: 276 Mo - dernière synchronisation: il y a plus d'un an - enregistré: il y a presque 3 ans - étoiles: 0 - forks: 0