An open API service providing repository metadata for many open source software ecosystems.

GitHub topics: parameter-efficient

microsoft/AdaMix

This is the implementation of the paper AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning (https://arxiv.org/abs/2205.12410).

Language: Python - Size: 16.7 MB - Last synced at: 1 day ago - Pushed at: over 1 year ago - Stars: 130 - Forks: 11

AGI-Edgerunners/LLM-Adapters

Code for our EMNLP 2023 Paper: "LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models"

Language: Python - Size: 73.2 MB - Last synced at: 10 days ago - Pushed at: about 1 year ago - Stars: 1,150 - Forks: 113

PhoebusSi/Alpaca-CoT

We unified the interfaces of instruction-tuning data (e.g., CoT data), multiple LLMs and parameter-efficient methods (e.g., lora, p-tuning) together for easy use. We welcome open-source enthusiasts to initiate any meaningful PR on this repo and integrate as many LLM related technologies as possible. 我们打造了方便研究人员上手和使用大模型等微调平台,我们欢迎开源爱好者发起任何有意义的pr!

Language: Jupyter Notebook - Size: 137 MB - Last synced at: 8 days ago - Pushed at: over 1 year ago - Stars: 2,728 - Forks: 253

BeSpontaneous/FFN-pytorch

Frame Flexible Network (CVPR2023)

Language: Python - Size: 15.5 MB - Last synced at: about 1 year ago - Pushed at: about 2 years ago - Stars: 52 - Forks: 5

joaopauloschuler/kEffNetV1

This repository contains the source code for the paper "Grouped Pointwise Convolutions Reduce Parameters in Convolutional Neural Networks".

Language: Jupyter Notebook - Size: 131 MB - Last synced at: about 1 year ago - Pushed at: about 1 year ago - Stars: 6 - Forks: 1

joaopauloschuler/k-neural-api

K-CAI NEURAL API - Keras based neural network API that will allow you to create parameter-efficient, memory-efficient, flops-efficient multipath models with new layer types. There are plenty of examples and documentation.

Language: Python - Size: 15.4 MB - Last synced at: about 1 year ago - Pushed at: about 1 year ago - Stars: 130 - Forks: 110

virginiakm1988/Easy-Adapter

Code for AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP tasks

Language: Jupyter Notebook - Size: 113 KB - Last synced at: 7 days ago - Pushed at: over 1 year ago - Stars: 5 - Forks: 4

JoshWarn/Parameter-Efficient-MNIST

How many parameters are needed to get 99% on MNIST? Personal record of 697 parameters.

Language: Python - Size: 8.98 MB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 1 - Forks: 0