An open API service providing repository metadata for many open source software ecosystems.

gitlab.com topics: LSTM neural network

pophaleajinkya/nlp_rnn_and_bi-lstm_amazon_cell_phones_customer_ratings

Evaluation of various deep learning models for sentiment analysis You are given the reviews dataset. These are 194439 amazon reviews for cell phones and accessories taken from https://jmcauley.ucsd.edu/data/amazon/ Use the “reviewText” and “overall” fields from this file. The goal is to predict the rating given the review by modeling it as a multi-class classification problem. • Take the first 70% dataset for train, next 10% for validation/development, and remaining 20% for test. • Recurrent neural networks • RNNs: Train a single directional RNN with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set. • LSTMs: Train a single directional LSTM with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set. • BiLSTM: Train a single directional RNN with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set.

Last synced at: about 2 years ago - Stars: 0 - Forks: 0

lucaped/stock-prices-prediction

Last synced at: over 2 years ago - Stars: 0 - Forks: 0