An open API service providing repository metadata for many open source software ecosystems.

Topic: "interpretability"

shap/shap

A game theoretic approach to explain the output of any machine learning model.

Language: Jupyter Notebook - Size: 282 MB - Last synced at: 3 days ago - Pushed at: 4 days ago - Stars: 23,949 - Forks: 3,369

EthicalML/awesome-production-machine-learning

A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Size: 2.43 MB - Last synced at: 12 days ago - Pushed at: 12 days ago - Stars: 18,486 - Forks: 2,351

jacobgil/pytorch-grad-cam

Advanced AI Explainability for computer vision. Support for CNNs, Vision Transformers, Classification, Object detection, Segmentation, Image similarity and more.

Language: Python - Size: 134 MB - Last synced at: 19 days ago - Pushed at: 2 months ago - Stars: 11,641 - Forks: 1,636

interpretml/interpret

Fit interpretable models. Explain blackbox machine learning.

Language: C++ - Size: 14.8 MB - Last synced at: 1 day ago - Pushed at: 2 days ago - Stars: 6,516 - Forks: 749

pytorch/captum

Model interpretability and understanding for PyTorch

Language: Python - Size: 308 MB - Last synced at: 2 days ago - Pushed at: 2 days ago - Stars: 5,244 - Forks: 521

tensorflow/lucid 📦

A collection of infrastructure and tools for research in neural network interpretability.

Language: Jupyter Notebook - Size: 141 MB - Last synced at: 1 day ago - Pushed at: over 2 years ago - Stars: 4,691 - Forks: 653

jphall663/awesome-machine-learning-interpretability

A curated list of awesome responsible machine learning resources.

Size: 2.42 MB - Last synced at: 6 days ago - Pushed at: 6 days ago - Stars: 3,786 - Forks: 603

stellargraph/stellargraph

StellarGraph - Machine Learning on Graphs

Language: Python - Size: 92.5 MB - Last synced at: 17 days ago - Pushed at: about 1 year ago - Stars: 3,006 - Forks: 434

MAIF/shapash

🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models

Language: Jupyter Notebook - Size: 61.8 MB - Last synced at: 18 days ago - Pushed at: 21 days ago - Stars: 2,881 - Forks: 346

SeldonIO/alibi

Algorithms for explaining machine learning models

Language: Python - Size: 30.3 MB - Last synced at: 17 days ago - Pushed at: 29 days ago - Stars: 2,502 - Forks: 257

frgfm/torch-cam

Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

Language: Python - Size: 10.3 MB - Last synced at: 17 days ago - Pushed at: 22 days ago - Stars: 2,192 - Forks: 220

chaoyanghe/Awesome-Federated-Learning

FedML - The Research and Production Integrated Federated Learning Library: https://fedml.ai

Size: 210 KB - Last synced at: 24 days ago - Pushed at: almost 3 years ago - Stars: 1,957 - Forks: 329

google-deepmind/penzai

A JAX research toolkit for building, editing, and visualizing neural networks.

Language: Python - Size: 484 MB - Last synced at: 6 days ago - Pushed at: about 1 month ago - Stars: 1,781 - Forks: 64

ramprs/grad-cam

[ICCV 2017] Torch code for Grad-CAM

Language: Lua - Size: 1.54 MB - Last synced at: 15 days ago - Pushed at: over 2 years ago - Stars: 1,557 - Forks: 229

microsoft/responsible-ai-toolbox

Responsible AI Toolbox is a suite of tools providing model and data exploration and assessment user interfaces and libraries that enable a better understanding of AI systems. These interfaces and libraries empower developers and stakeholders of AI systems to develop and monitor AI more responsibly, and take better data-driven actions.

Language: TypeScript - Size: 111 MB - Last synced at: 1 day ago - Pushed at: 4 months ago - Stars: 1,552 - Forks: 409

wangyongjie-ntu/Awesome-explainable-AI

A collection of research materials on explainable AI/ML

Language: Markdown - Size: 1.93 MB - Last synced at: about 1 month ago - Pushed at: 3 months ago - Stars: 1,494 - Forks: 203

stanfordnlp/pyreft

Stanford NLP Python library for Representation Finetuning (ReFT)

Language: Python - Size: 104 MB - Last synced at: 17 days ago - Pushed at: 4 months ago - Stars: 1,468 - Forks: 125

csinva/imodels

Interpretable ML package 🔍 for concise, transparent, and accurate predictive modeling (sklearn-compatible).

Language: Jupyter Notebook - Size: 162 MB - Last synced at: 6 days ago - Pushed at: 3 months ago - Stars: 1,465 - Forks: 124

ModelOriented/DALEX

moDel Agnostic Language for Exploration and eXplanation

Language: Python - Size: 798 MB - Last synced at: 17 days ago - Pushed at: 4 months ago - Stars: 1,422 - Forks: 168

cdpierse/transformers-interpret

Model explainability that works seamlessly with 🤗 transformers. Explain your transformers model in just 2 lines of code.

Language: Jupyter Notebook - Size: 7.87 MB - Last synced at: 9 days ago - Pushed at: almost 2 years ago - Stars: 1,346 - Forks: 99

EthicalML/xai

XAI - An eXplainability toolbox for machine learning

Language: Python - Size: 17.8 MB - Last synced at: 15 days ago - Pushed at: over 3 years ago - Stars: 1,171 - Forks: 179

sicara/tf-explain

Interpretability Methods for tf.keras models with Tensorflow 2.x

Language: Python - Size: 931 KB - Last synced at: 9 days ago - Pushed at: about 1 year ago - Stars: 1,028 - Forks: 110

kundajelab/deeplift

Public facing deeplift repo

Language: Python - Size: 10.7 MB - Last synced at: 18 days ago - Pushed at: about 3 years ago - Stars: 856 - Forks: 169

shubhomoydas/ad_examples

A collection of anomaly detection methods (iid/point-based, graph and time series) including active learning for anomaly detection/discovery, bayesian rule-mining, description for diversity/explanation/interpretability. Analysis of incorporating label feedback with ensemble and tree-based detectors. Includes adversarial attacks with Graph Convolutional Network.

Language: Python - Size: 125 MB - Last synced at: 3 months ago - Pushed at: about 1 year ago - Stars: 855 - Forks: 184

hila-chefer/Transformer-MM-Explainability

[ICCV 2021- Oral] Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

Language: Jupyter Notebook - Size: 25.3 MB - Last synced at: 14 days ago - Pushed at: almost 2 years ago - Stars: 851 - Forks: 110

pbiecek/xai_resources

Interesting resources related to XAI (Explainable Artificial Intelligence)

Language: R - Size: 13.2 MB - Last synced at: 14 days ago - Pushed at: about 3 years ago - Stars: 830 - Forks: 138

oneTaken/awesome_deep_learning_interpretability

深度学习近年来关于神经网络模型解释性的相关高引用/顶会论文(附带代码)

Size: 156 KB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 747 - Forks: 122

stanfordnlp/pyvene

Stanford NLP Python library for understanding and improving PyTorch models via interventions

Language: Python - Size: 25.4 MB - Last synced at: 17 days ago - Pushed at: about 1 month ago - Stars: 742 - Forks: 82

MisaOgura/flashtorch

Visualization toolkit for neural networks in PyTorch! Demo -->

Language: HTML - Size: 68.8 MB - Last synced at: 18 days ago - Pushed at: over 1 year ago - Stars: 740 - Forks: 87

deel-ai/xplique

👋 Xplique is a Neural Networks Explainability Toolbox

Language: Python - Size: 33.4 MB - Last synced at: 9 days ago - Pushed at: 8 months ago - Stars: 689 - Forks: 58

tensorflow/decision-forests

A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras.

Language: Python - Size: 5.94 MB - Last synced at: 1 day ago - Pushed at: 18 days ago - Stars: 680 - Forks: 113

jphall663/interpretable_machine_learning_with_python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

Language: Jupyter Notebook - Size: 34.7 MB - Last synced at: 14 days ago - Pushed at: 12 months ago - Stars: 679 - Forks: 207

tensorflow/tcav

Code for the TCAV ML interpretability project

Language: Jupyter Notebook - Size: 625 KB - Last synced at: 1 day ago - Pushed at: 10 months ago - Stars: 642 - Forks: 153

alvinwan/neural-backed-decision-trees

Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Language: Python - Size: 2.57 MB - Last synced at: 14 days ago - Pushed at: about 2 years ago - Stars: 621 - Forks: 131

kmeng01/rome

Locating and editing factual associations in GPT (NeurIPS 2022)

Language: Python - Size: 22.1 MB - Last synced at: about 2 months ago - Pushed at: about 1 year ago - Stars: 620 - Forks: 138

understandable-machine-intelligence-lab/Quantus

Quantus is an eXplainable AI toolkit for responsible evaluation of neural network explanations

Language: Jupyter Notebook - Size: 147 MB - Last synced at: 9 days ago - Pushed at: 4 months ago - Stars: 599 - Forks: 77

google/yggdrasil-decision-forests

A library to train, evaluate, interpret, and productionize decision forest models such as Random Forest and Gradient Boosted Decision Trees.

Language: C++ - Size: 41.1 MB - Last synced at: 4 days ago - Pushed at: 4 days ago - Stars: 585 - Forks: 61

ndif-team/nnsight

The nnsight package enables interpreting and manipulating the internals of deep learned models.

Language: Jupyter Notebook - Size: 59.8 MB - Last synced at: about 9 hours ago - Pushed at: about 10 hours ago - Stars: 579 - Forks: 52

ScalaConsultants/Aspect-Based-Sentiment-Analysis

💭 Aspect-Based-Sentiment-Analysis: Transformer & Explainable ML (TensorFlow)

Language: Python - Size: 1.8 MB - Last synced at: 9 days ago - Pushed at: about 1 month ago - Stars: 570 - Forks: 90

mmschlk/shapiq

Shapley Interactions and Shapley Values for Machine Learning

Language: Python - Size: 309 MB - Last synced at: 5 days ago - Pushed at: 5 days ago - Stars: 554 - Forks: 35

linkedin/FastTreeSHAP

Fast SHAP value computation for interpreting tree-based models

Language: Python - Size: 152 MB - Last synced at: 10 days ago - Pushed at: almost 2 years ago - Stars: 540 - Forks: 34

BCG-X-Official/facet

Human-explainable AI.

Language: Jupyter Notebook - Size: 50.5 MB - Last synced at: 15 days ago - Pushed at: over 1 year ago - Stars: 521 - Forks: 47

h2oai/mli-resources

H2O.ai Machine Learning Interpretability Resources

Language: Jupyter Notebook - Size: 65.8 MB - Last synced at: 12 days ago - Pushed at: over 4 years ago - Stars: 488 - Forks: 130

explainX/explainx

Explainable AI framework for data scientists. Explain & debug any blackbox machine learning model with a single line of code. We are looking for co-authors to take this project forward. Reach out @ [email protected]

Language: Jupyter Notebook - Size: 61.3 MB - Last synced at: 14 days ago - Pushed at: 10 months ago - Stars: 436 - Forks: 56

inseq-team/inseq

Interpretability for sequence generation models 🐛 🔍

Language: Python - Size: 7.64 MB - Last synced at: 10 days ago - Pushed at: about 1 month ago - Stars: 419 - Forks: 38

xmed-lab/CLIP_Surgery

CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks

Language: Jupyter Notebook - Size: 18.9 MB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 397 - Forks: 25

pratyushasharma/laser

The Truth Is In There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction

Language: Python - Size: 2.25 MB - Last synced at: 5 days ago - Pushed at: 11 months ago - Stars: 386 - Forks: 34

IAAR-Shanghai/Awesome-Attention-Heads

An awesome repository & A comprehensive survey on interpretability of LLM attention heads.

Language: TeX - Size: 6.07 MB - Last synced at: 28 days ago - Pushed at: 3 months ago - Stars: 348 - Forks: 12

sergioburdisso/pyss3

A Python package implementing a new interpretable machine learning model for text classification (with visualization tools for Explainable AI :octocat:)

Language: Python - Size: 102 MB - Last synced at: about 9 hours ago - Pushed at: about 10 hours ago - Stars: 341 - Forks: 44

ModelOriented/modelStudio

📍 Interactive Studio for Explanatory Model Analysis

Language: R - Size: 36.2 MB - Last synced at: 2 days ago - Pushed at: almost 2 years ago - Stars: 332 - Forks: 32

datamllab/awesome-fairness-in-ai

A curated list of awesome Fairness in AI resources

Size: 33.2 KB - Last synced at: 1 day ago - Pushed at: over 1 year ago - Stars: 321 - Forks: 66

hbaniecki/adversarial-explainable-ai

💡 Adversarial attacks on explanations and how to defend them

Size: 2.62 MB - Last synced at: 2 months ago - Pushed at: 6 months ago - Stars: 314 - Forks: 48

JoaoLages/diffusers-interpret

Diffusers-Interpret 🤗🧨🕵️‍♀️: Model explainability for 🤗 Diffusers. Get explanations for your generated images.

Language: Jupyter Notebook - Size: 77.5 MB - Last synced at: 3 days ago - Pushed at: over 2 years ago - Stars: 277 - Forks: 14

iancovert/sage

For calculating global feature importance using Shapley values.

Language: Python - Size: 7.93 MB - Last synced at: 11 days ago - Pushed at: 11 days ago - Stars: 270 - Forks: 35

SteveKGYang/MentalLLaMA

This repository introduces MentaLLaMA, the first open-source instruction following large language model for interpretable mental health analysis.

Language: Python - Size: 13.2 MB - Last synced at: 5 days ago - Pushed at: over 1 year ago - Stars: 264 - Forks: 27

AI4LIFE-GROUP/OpenXAI

OpenXAI : Towards a Transparent Evaluation of Model Explanations

Language: JavaScript - Size: 41.7 MB - Last synced at: about 1 month ago - Pushed at: 10 months ago - Stars: 245 - Forks: 43

haofanwang/Awesome-Computer-Vision

Awesome Resources for Advanced Computer Vision Topics

Size: 93.8 KB - Last synced at: about 1 month ago - Pushed at: over 2 years ago - Stars: 230 - Forks: 43

hijohnnylin/neuronpedia

open source interpretability platform 🧠

Language: TypeScript - Size: 13.1 MB - Last synced at: 1 day ago - Pushed at: 1 day ago - Stars: 227 - Forks: 28

chr5tphr/zennit

Zennit is a high-level framework in Python using PyTorch for explaining/exploring neural networks using attribution methods like LRP.

Language: Python - Size: 2.28 MB - Last synced at: 13 days ago - Pushed at: 11 months ago - Stars: 226 - Forks: 34

g8a9/ferret

A python package for benchmarking interpretability techniques on Transformers.

Language: Python - Size: 1.52 MB - Last synced at: 24 days ago - Pushed at: 8 months ago - Stars: 211 - Forks: 15

ArrasL/LRP_for_LSTM

Layer-wise Relevance Propagation (LRP) for LSTMs.

Language: Python - Size: 12.4 MB - Last synced at: over 1 year ago - Pushed at: about 5 years ago - Stars: 204 - Forks: 58

rigvedrs/YOLO-V11-CAM

Wanna know what your model sees? Here's a package for applying EigenCAM and generating heatmap from the new YOLO V11 model

Language: Jupyter Notebook - Size: 40 MB - Last synced at: about 1 month ago - Pushed at: about 1 month ago - Stars: 201 - Forks: 42

ShengcaiLiao/QAConv

[ECCV 2020] QAConv: Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting, and [CVPR 2022] GS: Graph Sampling Based Deep Metric Learning

Language: Python - Size: 5.42 MB - Last synced at: over 1 year ago - Pushed at: over 2 years ago - Stars: 188 - Forks: 30

pralab/secml

A Python library for Secure and Explainable Machine Learning

Language: Jupyter Notebook - Size: 67.2 MB - Last synced at: 14 days ago - Pushed at: 4 months ago - Stars: 176 - Forks: 26

PKU-Alignment/aligner

[NeurIPS 2024 Oral] Aligner: Efficient Alignment by Learning to Correct

Language: Python - Size: 16.3 MB - Last synced at: 13 days ago - Pushed at: 5 months ago - Stars: 175 - Forks: 9

jrieke/cnn-interpretability

🏥 Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer’s Disease

Language: Jupyter Notebook - Size: 61.5 MB - Last synced at: 3 days ago - Pushed at: almost 6 years ago - Stars: 171 - Forks: 50

Graph-COM/GSAT

[ICML 2022] Graph Stochastic Attention (GSAT) for interpretable and generalizable graph learning.

Language: Jupyter Notebook - Size: 1.57 MB - Last synced at: 2 months ago - Pushed at: over 1 year ago - Stars: 167 - Forks: 22

mims-harvard/GraphXAI

GraphXAI: Resource to support the development and evaluation of GNN explainers

Language: Python - Size: 249 MB - Last synced at: 7 months ago - Pushed at: about 1 year ago - Stars: 166 - Forks: 29

csinva/imodelsX

Interpret text data using LLMs (scikit-learn compatible).

Language: Python - Size: 35 MB - Last synced at: 15 days ago - Pushed at: 3 months ago - Stars: 165 - Forks: 26

AustinRochford/PyCEbox

⬛ Python Individual Conditional Expectation Plot Toolbox

Language: Jupyter Notebook - Size: 1.15 MB - Last synced at: 28 days ago - Pushed at: about 5 years ago - Stars: 165 - Forks: 35

poloclub/timbertrek

Explore and compare 1K+ accurate decision trees in your browser!

Language: TypeScript - Size: 36.9 MB - Last synced at: 29 days ago - Pushed at: over 1 year ago - Stars: 161 - Forks: 10

EleutherAI/knowledge-neurons

A library for finding knowledge neurons in pretrained transformer models.

Language: Python - Size: 11.6 MB - Last synced at: 29 days ago - Pushed at: over 3 years ago - Stars: 157 - Forks: 18

pietrobarbiero/pytorch_explain

PyTorch Explain: Interpretable Deep Learning in Python.

Language: Jupyter Notebook - Size: 42.1 MB - Last synced at: 19 days ago - Pushed at: about 1 year ago - Stars: 154 - Forks: 14

google-research/reverse-engineering-neural-networks

A collection of tools for reverse engineering neural networks.

Language: Jupyter Notebook - Size: 2.79 MB - Last synced at: 18 days ago - Pushed at: over 1 year ago - Stars: 153 - Forks: 28

vanderschaarlab/autoprognosis

A system for automating the design of predictive modeling pipelines tailored for clinical prognosis.

Language: Python - Size: 960 KB - Last synced at: 25 days ago - Pushed at: 2 months ago - Stars: 147 - Forks: 28

DFKI-NLP/thermostat

Collection of NLP model explanations and accompanying analysis tools

Language: Jsonnet - Size: 1.37 MB - Last synced at: 17 days ago - Pushed at: almost 2 years ago - Stars: 145 - Forks: 8

yulongwang12/visual-attribution

Pytorch Implementation of recent visual attribution methods for model interpretability

Language: Jupyter Notebook - Size: 27.7 MB - Last synced at: over 1 year ago - Pushed at: over 5 years ago - Stars: 141 - Forks: 25

mahmoodlab/SurvPath

Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction - CVPR 2024

Language: Python - Size: 99.6 MB - Last synced at: 13 days ago - Pushed at: 7 months ago - Stars: 137 - Forks: 11

JHoelli/Awesome-Time-Series-Explainability

A list of (post-hoc) XAI for time series

Size: 424 KB - Last synced at: 24 days ago - Pushed at: 9 months ago - Stars: 135 - Forks: 16

jasonjmcghee/livelove

Love2D LSP (VS Code / Neovim / Zed / etc.) extension for live coding and live variable tracking

Language: JavaScript - Size: 5.33 MB - Last synced at: 19 days ago - Pushed at: about 1 month ago - Stars: 134 - Forks: 2

fzi-forschungszentrum-informatik/TSInterpret

An Open-Source Library for the interpretability of time series classifiers

Language: Python - Size: 200 MB - Last synced at: 6 days ago - Pushed at: 6 months ago - Stars: 134 - Forks: 15

JunjH/Visualizing-CNNs-for-monocular-depth-estimation

official implementation of "Visualization of Convolutional Neural Networks for Monocular Depth Estimation"

Language: Python - Size: 1.38 MB - Last synced at: over 1 year ago - Pushed at: almost 3 years ago - Stars: 134 - Forks: 28

PKU-Alignment/AlignmentSurvey

AI Alignment: A Comprehensive Survey

Size: 4.04 MB - Last synced at: about 1 month ago - Pushed at: over 1 year ago - Stars: 133 - Forks: 1

yewsiang/ConceptBottleneck

Concept Bottleneck Models, ICML 2020

Language: Python - Size: 1.51 MB - Last synced at: over 1 year ago - Pushed at: over 2 years ago - Stars: 132 - Forks: 23

csinva/hierarchical-dnn-interpretations

Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)

Language: Jupyter Notebook - Size: 48.7 MB - Last synced at: 25 days ago - Pushed at: almost 4 years ago - Stars: 128 - Forks: 23

laura-rieger/deep-explanation-penalization

Code for using CDEP from the paper "Interpretations are useful: penalizing explanations to align neural networks with prior knowledge" https://arxiv.org/abs/1909.13584

Language: Jupyter Notebook - Size: 248 MB - Last synced at: 29 days ago - Pushed at: about 4 years ago - Stars: 127 - Forks: 14

zxhuang1698/interpretability-by-parts

Code repository for "Interpretable and Accurate Fine-grained Recognition via Region Grouping", CVPR 2020 (Oral)

Language: Python - Size: 11.2 MB - Last synced at: over 1 year ago - Pushed at: almost 5 years ago - Stars: 127 - Forks: 27

interpretml/gam-changer

Editing machine learning models to reflect human knowledge and values

Language: JavaScript - Size: 18.7 MB - Last synced at: about 1 month ago - Pushed at: over 1 year ago - Stars: 124 - Forks: 11

ThyrixYang/awesome-artificial-intelligence-research

A curated list of Artificial Intelligence (AI) Research, tracks the cutting edge trending of AI research, including recommender systems, computer vision, machine learning, etc.

Size: 44.9 KB - Last synced at: 28 days ago - Pushed at: over 2 years ago - Stars: 124 - Forks: 14

dylan-slack/TalkToModel

TalkToModel gives anyone with the powers of XAI through natural language conversations 💬!

Language: Python - Size: 10.1 MB - Last synced at: about 2 months ago - Pushed at: almost 2 years ago - Stars: 120 - Forks: 25

KennethEnevoldsen/asent

Asent is a python library for performing efficient and transparent sentiment analysis using spaCy.

Language: Python - Size: 54.2 MB - Last synced at: 12 days ago - Pushed at: about 1 year ago - Stars: 118 - Forks: 16

d909b/cxplain

Causal Explanation (CXPlain) is a method for explaining the predictions of any machine-learning model.

Language: Python - Size: 262 KB - Last synced at: over 1 year ago - Pushed at: almost 5 years ago - Stars: 118 - Forks: 34

OpenMOSS/Language-Model-SAEs

For OpenMOSS Mechanistic Interpretability Team's Sparse Autoencoder (SAE) research.

Language: Python - Size: 10.1 MB - Last synced at: 8 days ago - Pushed at: 8 days ago - Stars: 115 - Forks: 13

fredhohman/summit

🏔️ Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations

Language: JavaScript - Size: 14.4 MB - Last synced at: 6 days ago - Pushed at: over 5 years ago - Stars: 115 - Forks: 15

Julia-XAI/ExplainableAI.jl

Explainable AI in Julia.

Language: Julia - Size: 41.6 MB - Last synced at: 13 days ago - Pushed at: about 2 months ago - Stars: 112 - Forks: 3

chi0tzp/WarpedGANSpace

[ICCV 2021] Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space".

Language: Python - Size: 439 MB - Last synced at: over 1 year ago - Pushed at: almost 2 years ago - Stars: 110 - Forks: 6

andreysharapov/xaience

All about explainable AI, algorithmic fairness and more

Language: HTML - Size: 7.81 GB - Last synced at: about 1 year ago - Pushed at: over 1 year ago - Stars: 106 - Forks: 12

pbiecek/breakDown

Model Agnostics breakDown plots

Language: R - Size: 20.2 MB - Last synced at: 18 days ago - Pushed at: about 1 year ago - Stars: 103 - Forks: 16

M-Nauta/ProtoTree

ProtoTrees: Neural Prototype Trees for Interpretable Fine-grained Image Recognition, published at CVPR2021

Language: Python - Size: 870 KB - Last synced at: 29 days ago - Pushed at: almost 3 years ago - Stars: 101 - Forks: 21

whyisyoung/CADE

Code for our USENIX Security 2021 paper -- CADE: Detecting and Explaining Concept Drift Samples for Security Applications

Language: Python - Size: 188 MB - Last synced at: over 1 year ago - Pushed at: about 2 years ago - Stars: 99 - Forks: 31

Related Topics
machine-learning 241 deep-learning 152 explainable-ai 147 explainability 136 xai 107 interpretable-machine-learning 86 pytorch 83 python 72 explainable-ml 57 artificial-intelligence 49 ai 41 data-science 36 interpretable-ai 35 neural-network 34 computer-vision 31 nlp 31 interpretable-deep-learning 30 visualization 30 transformers 27 neural-networks 27 lime 27 llm 26 shap 25 interpretable-ml 25 tensorflow 24 iml 24 natural-language-processing 24 large-language-models 24 explainable-artificial-intelligence 23 time-series 23 ml 21 language-model 20 fairness 20 transparency 19 convolutional-neural-networks 18 classification 17 robustness 17 scikit-learn 16 mechanistic-interpretability 16 transformer 15 statistics 14 random-forest 14 cnn 14 deep-neural-networks 14 medical-imaging 14 feature-importance 14 reinforcement-learning 13 machine-learning-interpretability 13 counterfactual-explanations 12 graph-neural-networks 12 decision-trees 11 feature-attribution 11 keras 11 python3 11 shapley 10 data-mining 10 gradcam 10 awesome-list 9 explainable-machine-learning 9 embeddings 9 captum 9 explanation 9 bias 9 xgboost 9 regression 9 llms 9 transfer-learning 9 attention-mechanism 9 concepts 8 concept-based-explanations 8 explanations 8 text-classification 8 accountability 8 adversarial-attacks 8 clip 8 healthcare 8 ai-safety 8 jupyter-notebook 7 grad-cam 7 concept-based-models 7 machine-learning-algorithms 7 representation-learning 7 probing 7 generative-adversarial-network 7 gradient-boosting 7 awesome 7 shapley-value 7 interpretability-methods 7 generalization 7 r 7 interpretable 7 survey 6 multimodal 6 saliency 6 anomaly-detection 6 gpt 6 research 6 decision-tree 6 dataset 6 image-classification 6