Topic: "interpretable-machine-learning"
interpretml/interpret
Fit interpretable models. Explain blackbox machine learning.
Language: C++ - Size: 14.9 MB - Last synced at: 7 days ago - Pushed at: 7 days ago - Stars: 6,527 - Forks: 750

jphall663/awesome-machine-learning-interpretability
A curated list of awesome responsible machine learning resources.
Size: 3.2 MB - Last synced at: 2 days ago - Pushed at: 2 days ago - Stars: 3,805 - Forks: 604

ModelOriented/DALEX
moDel Agnostic Language for Exploration and eXplanation
Language: Python - Size: 798 MB - Last synced at: about 1 month ago - Pushed at: 4 months ago - Stars: 1,422 - Forks: 168

interpretml/DiCE
Generate Diverse Counterfactual Explanations for any machine learning model.
Language: Python - Size: 14.9 MB - Last synced at: 23 days ago - Pushed at: 23 days ago - Stars: 1,405 - Forks: 203

SelfExplainML/PiML-Toolbox
PiML (Python Interpretable Machine Learning) toolbox for model development & diagnostics
Language: Jupyter Notebook - Size: 250 MB - Last synced at: 7 days ago - Pushed at: 3 months ago - Stars: 1,253 - Forks: 130

salesforce/OmniXAI
OmniXAI: A Library for eXplainable AI
Language: Jupyter Notebook - Size: 64.7 MB - Last synced at: 25 days ago - Pushed at: 11 months ago - Stars: 924 - Forks: 99

lopusz/awesome-interpretable-machine-learning
Language: Python - Size: 1.47 MB - Last synced at: about 2 months ago - Pushed at: over 2 years ago - Stars: 916 - Forks: 139

dswah/pyGAM
[HELP REQUESTED] Generalized Additive Models in Python
Language: Python - Size: 15.6 MB - Last synced at: about 1 year ago - Pushed at: about 1 year ago - Stars: 839 - Forks: 154

pbiecek/xai_resources
Interesting resources related to XAI (Explainable Artificial Intelligence)
Language: R - Size: 13.2 MB - Last synced at: about 1 month ago - Pushed at: about 3 years ago - Stars: 830 - Forks: 138

jphall663/interpretable_machine_learning_with_python
Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
Language: Jupyter Notebook - Size: 34.7 MB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 679 - Forks: 207

mmschlk/shapiq
Shapley Interactions and Shapley Values for Machine Learning
Language: Python - Size: 312 MB - Last synced at: 6 days ago - Pushed at: 6 days ago - Stars: 560 - Forks: 36

h2oai/mli-resources
H2O.ai Machine Learning Interpretability Resources
Language: Jupyter Notebook - Size: 65.8 MB - Last synced at: 29 days ago - Pushed at: over 4 years ago - Stars: 488 - Forks: 130

explainX/explainx
Explainable AI framework for data scientists. Explain & debug any blackbox machine learning model with a single line of code. We are looking for co-authors to take this project forward. Reach out @ [email protected]
Language: Jupyter Notebook - Size: 61.3 MB - Last synced at: about 1 month ago - Pushed at: 10 months ago - Stars: 436 - Forks: 56

sergioburdisso/pyss3
A Python package implementing a new interpretable machine learning model for text classification (with visualization tools for Explainable AI :octocat:)
Language: Python - Size: 102 MB - Last synced at: 7 days ago - Pushed at: 17 days ago - Stars: 341 - Forks: 44

ModelOriented/modelStudio
📍 Interactive Studio for Explanatory Model Analysis
Language: R - Size: 36.2 MB - Last synced at: 8 days ago - Pushed at: almost 2 years ago - Stars: 332 - Forks: 32

hbaniecki/adversarial-explainable-ai
💡 Adversarial attacks on explanations and how to defend them
Size: 2.62 MB - Last synced at: 3 months ago - Pushed at: 7 months ago - Stars: 314 - Forks: 48

salesforce/ETSformer
PyTorch code for ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Language: Python - Size: 459 KB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 278 - Forks: 43

idealo/cnn-exposed 📦
🕵️♂️ Interpreting Convolutional Neural Network (CNN) Results.
Language: Jupyter Notebook - Size: 69.6 MB - Last synced at: about 2 months ago - Pushed at: 6 months ago - Stars: 177 - Forks: 30

jrieke/cnn-interpretability
🏥 Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer’s Disease
Language: Jupyter Notebook - Size: 61.5 MB - Last synced at: 3 days ago - Pushed at: almost 6 years ago - Stars: 171 - Forks: 50

Graph-COM/GSAT
[ICML 2022] Graph Stochastic Attention (GSAT) for interpretable and generalizable graph learning.
Language: Jupyter Notebook - Size: 1.57 MB - Last synced at: 3 months ago - Pushed at: over 1 year ago - Stars: 167 - Forks: 22

pietrobarbiero/pytorch_explain
PyTorch Explain: Interpretable Deep Learning in Python.
Language: Jupyter Notebook - Size: 42.1 MB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 154 - Forks: 14

JHoelli/Awesome-Time-Series-Explainability
A list of (post-hoc) XAI for time series
Size: 424 KB - Last synced at: 3 days ago - Pushed at: 10 months ago - Stars: 147 - Forks: 18

fzi-forschungszentrum-informatik/TSInterpret
An Open-Source Library for the interpretability of time series classifiers
Language: Python - Size: 200 MB - Last synced at: 8 days ago - Pushed at: 7 months ago - Stars: 134 - Forks: 15

yewsiang/ConceptBottleneck
Concept Bottleneck Models, ICML 2020
Language: Python - Size: 1.51 MB - Last synced at: over 1 year ago - Pushed at: over 2 years ago - Stars: 132 - Forks: 23

rachtibat/zennit-crp
An eXplainable AI toolkit with Concept Relevance Propagation and Relevance Maximization
Language: Jupyter Notebook - Size: 17.9 MB - Last synced at: about 1 month ago - Pushed at: about 1 year ago - Stars: 127 - Forks: 18

bgreenwell/fastshap
Fast approximate Shapley values in R
Language: R - Size: 99.4 MB - Last synced at: about 1 month ago - Pushed at: over 1 year ago - Stars: 121 - Forks: 18

VincentGranville/Machine-Learning
Material related to my book Intuitive Machine Learning. Some of this material is also featured in my new book Synthetic Data and Generative AI.
Language: Python - Size: 52.1 MB - Last synced at: about 23 hours ago - Pushed at: about 23 hours ago - Stars: 120 - Forks: 35

dylan-slack/TalkToModel
TalkToModel gives anyone with the powers of XAI through natural language conversations 💬!
Language: Python - Size: 10.1 MB - Last synced at: 2 months ago - Pushed at: almost 2 years ago - Stars: 120 - Forks: 25

ModelOriented/survex
Explainable Machine Learning in Survival Analysis
Language: R - Size: 309 MB - Last synced at: 26 days ago - Pushed at: about 1 year ago - Stars: 112 - Forks: 10

andreysharapov/xaience
All about explainable AI, algorithmic fairness and more
Language: HTML - Size: 7.81 GB - Last synced at: about 1 year ago - Pushed at: over 1 year ago - Stars: 106 - Forks: 12

M-Nauta/ProtoTree
ProtoTrees: Neural Prototype Trees for Interpretable Fine-grained Image Recognition, published at CVPR2021
Language: Python - Size: 870 KB - Last synced at: about 2 months ago - Pushed at: almost 3 years ago - Stars: 101 - Forks: 21

nredell/ShapML.jl
A Julia package for interpretable machine learning with stochastic Shapley values
Language: Julia - Size: 529 KB - Last synced at: 4 days ago - Pushed at: about 1 year ago - Stars: 90 - Forks: 8

ModelOriented/treeshap
Compute SHAP values for your tree-based models using the TreeSHAP algorithm
Language: R - Size: 19.7 MB - Last synced at: 21 days ago - Pushed at: 11 months ago - Stars: 88 - Forks: 24

charmlab/mace
Model Agnostic Counterfactual Explanations
Language: Python - Size: 3 MB - Last synced at: 5 months ago - Pushed at: over 2 years ago - Stars: 87 - Forks: 12

12wang3/rrl
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification" and TPAMI paper "Learning Interpretable Rules for Scalable Data Representation and Classification"
Language: Python - Size: 561 KB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 84 - Forks: 22

zju-vipa/awesome-neural-trees
Introduction, selected papers and possible corresponding codes in our review paper "A Survey of Neural Trees"
Size: 1.66 MB - Last synced at: about 2 months ago - Pushed at: over 2 years ago - Stars: 78 - Forks: 9

BioroboticsLab/IBA
Information Bottlenecks for Attribution
Language: Python - Size: 201 KB - Last synced at: 7 months ago - Pushed at: over 2 years ago - Stars: 75 - Forks: 9

inouye-lab/ShapleyExplanationNetworks
Implementation of the paper "Shapley Explanation Networks"
Language: Python - Size: 25.4 KB - Last synced at: almost 2 years ago - Pushed at: over 4 years ago - Stars: 75 - Forks: 18

SinaMohseni/Awesome-XAI-Evaluation
Reference tables to introduce and organize evaluation methods and measures for explainable machine learning systems
Size: 251 KB - Last synced at: 12 days ago - Pushed at: about 3 years ago - Stars: 74 - Forks: 10

nredell/shapFlex
An R package for computing asymmetric Shapley values to assess causality in any trained machine learning model
Language: R - Size: 2.13 MB - Last synced at: 2 months ago - Pushed at: about 5 years ago - Stars: 74 - Forks: 7

firmai/ml-fairness-framework
FairPut - Machine Learning Fairness Framework with LightGBM — Explainability, Robustness, Fairness (by @firmai)
Language: Jupyter Notebook - Size: 10.5 MB - Last synced at: 4 days ago - Pushed at: over 3 years ago - Stars: 71 - Forks: 16

ml-for-high-risk-apps-book/Machine-Learning-for-High-Risk-Applications-Book
Official code repo for the O'Reilly Book - Machine Learning for High-Risk Applications
Language: Jupyter Notebook - Size: 89.6 MB - Last synced at: about 2 years ago - Pushed at: about 2 years ago - Stars: 64 - Forks: 16

pillowsofwind/Knowledge-Conflicts-Survey
The official GitHub repo for the survey paper "Knowledge Conflicts for LLMs: A Survey"
Size: 1.25 MB - Last synced at: 10 months ago - Pushed at: 10 months ago - Stars: 53 - Forks: 0

cair/convolutional-tsetlin-machine-tutorial
Tutorial on the Convolutional Tsetlin Machine
Language: Python - Size: 316 KB - Last synced at: 2 months ago - Pushed at: over 4 years ago - Stars: 53 - Forks: 13

pbiecek/XAIatERUM2020
Workshop: Explanation and exploration of machine learning models with R and DALEX at eRum 2020
Language: R - Size: 64.5 MB - Last synced at: 2 months ago - Pushed at: almost 4 years ago - Stars: 52 - Forks: 11

rehmanzafar/xai-iml-sota
Interesting resources related to Explainable Artificial Intelligence, Interpretable Machine Learning, Interactive Machine Learning, Human in Loop and Visual Analytics.
Language: R - Size: 1.12 MB - Last synced at: over 2 years ago - Pushed at: over 2 years ago - Stars: 51 - Forks: 13

RishiDarkDevil/daam-i2i Fork of castorini/daam
Diffusion attentive attribution maps for interpreting Stable Diffusion for image-to-image attention.
Language: Python - Size: 30.3 MB - Last synced at: 6 months ago - Pushed at: 6 months ago - Stars: 49 - Forks: 1

adaamko/POTATO
XAI based human-in-the-loop framework for automatic rule-learning.
Language: Jupyter Notebook - Size: 6.07 MB - Last synced at: 20 days ago - Pushed at: 12 months ago - Stars: 49 - Forks: 8

ModelOriented/kernelshap
Different SHAP algorithms
Language: R - Size: 2.5 MB - Last synced at: about 2 months ago - Pushed at: 3 months ago - Stars: 47 - Forks: 7

gianlucatruda/quantified-sleep
Quantified Sleep: Machine learning techniques for observational n-of-1 studies.
Language: Jupyter Notebook - Size: 11.1 MB - Last synced at: about 2 months ago - Pushed at: about 4 years ago - Stars: 46 - Forks: 2

M-Nauta/PIPNet
PIP-Net: Patch-based Intuitive Prototypes Network for Interpretable Image Classification (CVPR 2023)
Language: Python - Size: 3.85 MB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 43 - Forks: 8

cair/pyTsetlinMachineParallel
Multi-threaded implementation of the Tsetlin Machine, Convolutional Tsetlin Machine, Regression Tsetlin Machine, and Weighted Tsetlin Machine, with support for continuous features and multigranularity.
Language: C - Size: 290 KB - Last synced at: about 1 month ago - Pushed at: over 2 years ago - Stars: 41 - Forks: 9

keiserlab/plaquebox-paper
Repo for Tang et al, bioRxiv 454793 (2018)
Language: Jupyter Notebook - Size: 31.6 MB - Last synced at: about 1 month ago - Pushed at: over 6 years ago - Stars: 41 - Forks: 25

sayakpaul/Benchmarking-and-MLI-experiments-on-the-Adult-dataset
Contains benchmarking and interpretability experiments on the Adult dataset using several libraries
Language: Jupyter Notebook - Size: 869 KB - Last synced at: 14 days ago - Pushed at: about 6 years ago - Stars: 35 - Forks: 12

pkassraie/CNN_Visualizations
Visualization of Adversarial Examples
Language: Python - Size: 260 MB - Last synced at: about 2 years ago - Pushed at: over 6 years ago - Stars: 31 - Forks: 4

IBM/AutoPeptideML
AutoML system for building trustworthy peptide bioactivity predictors
Language: Python - Size: 48.9 MB - Last synced at: 7 days ago - Pushed at: 7 days ago - Stars: 30 - Forks: 2

pyartemis/artemis
A Python package with explanation methods for extraction of feature interactions from predictive models
Language: Jupyter Notebook - Size: 16.6 MB - Last synced at: 18 days ago - Pushed at: over 1 year ago - Stars: 30 - Forks: 0

Samyu0304/graph-information-bottleneck-for-Subgraph-Recognition
Language: Python - Size: 1.94 MB - Last synced at: over 2 years ago - Pushed at: over 2 years ago - Stars: 28 - Forks: 4

gully/blase
Interpretable Machine Learning for astronomical spectroscopy in PyTorch and JAX
Language: Jupyter Notebook - Size: 74.3 MB - Last synced at: about 1 month ago - Pushed at: about 1 month ago - Stars: 27 - Forks: 8

FarnoushRJ/MambaLRP
[NeurIPS 2024] Official implementation of the paper "MambaLRP: Explaining Selective State Space Sequence Models".
Language: Python - Size: 7.5 MB - Last synced at: 8 months ago - Pushed at: 8 months ago - Stars: 27 - Forks: 3

jphall663/diabetes_use_case
Sample use case for Xavier AI in Healthcare conference: https://www.xavierhealth.org/ai-summit-day2/
Language: Jupyter Notebook - Size: 73.7 MB - Last synced at: 3 months ago - Pushed at: about 1 year ago - Stars: 27 - Forks: 13

solegalli/machine-learning-interpretability
Code repository for the online course Machine Learning Interpretability
Language: Jupyter Notebook - Size: 23.9 MB - Last synced at: 2 months ago - Pushed at: 8 months ago - Stars: 26 - Forks: 18

deepfx/netlens
A toolkit for interpreting and analyzing neural networks (vision)
Language: Jupyter Notebook - Size: 130 MB - Last synced at: 4 days ago - Pushed at: almost 5 years ago - Stars: 26 - Forks: 2

YujiaBao/R2A
"Deriving Machine Attention from Human Rationales" EMNLP 2018
Language: Python - Size: 1.42 MB - Last synced at: over 1 year ago - Pushed at: over 6 years ago - Stars: 26 - Forks: 5

Crisp-Unimib/ContrXT
a tool for comparing the predictions of any text classifiers
Language: Python - Size: 6.4 MB - Last synced at: 28 days ago - Pushed at: almost 3 years ago - Stars: 25 - Forks: 2

imatge-upc/SurvLIMEpy
Local interpretability for survival models
Language: Python - Size: 3.7 MB - Last synced at: 5 days ago - Pushed at: about 1 year ago - Stars: 24 - Forks: 4

tlverse/causalglm
Interpretable and model-robust causal inference for heterogeneous treatment effects using generalized linear working models with targeted machine-learning
Language: R - Size: 7.27 MB - Last synced at: 3 months ago - Pushed at: about 3 years ago - Stars: 24 - Forks: 0

mayer79/flashlight
Machine learning explanations
Language: R - Size: 65.3 MB - Last synced at: 8 days ago - Pushed at: 3 months ago - Stars: 23 - Forks: 4

Graph-COM/LRI
[ICLR 2023] Learnable Randomness Injection (LRI) for interpretable Geometric Deep Learning.
Language: Python - Size: 937 KB - Last synced at: 3 months ago - Pushed at: almost 2 years ago - Stars: 23 - Forks: 3

schalkdaniel/compboost
C++ implementation and R API for componentwise boosting
Language: C++ - Size: 203 MB - Last synced at: 8 days ago - Pushed at: about 2 years ago - Stars: 23 - Forks: 3

Henrymachiyu/ProtoViT
This code implements ProtoViT, a novel approach that combines Vision Transformers with prototype-based learning to create interpretable image classification models. Our implementation provides both high accuracy and explainability through learned prototypes.
Language: Python - Size: 1020 KB - Last synced at: about 1 month ago - Pushed at: about 1 month ago - Stars: 22 - Forks: 7

JonathanCrabbe/Label-Free-XAI
This repository contains the implementation of Label-Free XAI, a new framework to adapt explanation methods to unsupervised models. For more details, please read our ICML 2022 paper: 'Label-Free Explainability for Unsupervised Models'.
Language: Python - Size: 8.19 MB - Last synced at: about 1 year ago - Pushed at: almost 3 years ago - Stars: 22 - Forks: 9

jphall663/hc_ml
Slides, videos and other potentially useful artifacts from various presentations on responsible machine learning.
Language: TeX - Size: 34.4 MB - Last synced at: 24 days ago - Pushed at: over 5 years ago - Stars: 22 - Forks: 8

dandls/counterfactuals
counterfactuals: An R package for Counterfactual Explanation Methods
Language: HTML - Size: 120 MB - Last synced at: 30 days ago - Pushed at: 8 months ago - Stars: 21 - Forks: 4

daikikatsuragawa/awesome-counterfactual-explanations
This repository is a curated collection of information (keywords, papers, libraries, books, etc.) about counterfactual explanations🙃 Contributions are welcome! Our maintenance capacity is limited, so we highly appreciate pull requests.
Size: 12.7 KB - Last synced at: 11 days ago - Pushed at: over 2 years ago - Stars: 21 - Forks: 0

navdeep-G/interpretable-ml
Techniques & resources for training interpretable ML models, explaining ML models, and debugging ML models.
Language: Jupyter Notebook - Size: 84.4 MB - Last synced at: 3 months ago - Pushed at: about 3 years ago - Stars: 21 - Forks: 8

ottenbreit-data-science/aplr
APLR builds predictive, interpretable regression and classification models using Automatic Piecewise Linear Regression. It often rivals tree-based methods in predictive accuracy while offering smoother and interpretable predictions.
Language: C++ - Size: 6.13 MB - Last synced at: about 1 month ago - Pushed at: 2 months ago - Stars: 19 - Forks: 5

benjaminpatrickevans/XAI
Genetic programming method for explaining complex black-box models
Language: Python - Size: 73.2 KB - Last synced at: about 13 hours ago - Pushed at: about 1 year ago - Stars: 19 - Forks: 3

12wang3/mllp
The code of AAAI 2020 paper "Transparent Classification with Multilayer Logical Perceptrons and Random Binarization".
Language: Python - Size: 3.69 MB - Last synced at: about 1 year ago - Pushed at: over 1 year ago - Stars: 19 - Forks: 6

CoderPat/learning-scaffold
This is the official implementation for the paper "Learning to Scaffold: Optimizing Model Explanations for Teaching"
Language: Jupyter Notebook - Size: 3.75 MB - Last synced at: 2 months ago - Pushed at: about 3 years ago - Stars: 19 - Forks: 5

mertkosan/GCFExplainer
Global Counterfactual Explainer for Graph Neural Networks
Language: Python - Size: 16.3 MB - Last synced at: 3 months ago - Pushed at: over 2 years ago - Stars: 18 - Forks: 4

davideferrari92/multiobjective_symbolic_regression
This is a Python library that implements a Multi-objective Symbolic Regression algorithm. It can be used as a Machine Learning algorithm to create predictive models in the form of mathematical expressions.
Language: Python - Size: 1.1 MB - Last synced at: 3 months ago - Pushed at: 8 months ago - Stars: 17 - Forks: 5

utwente-dmb/xai-papers
Language: TypeScript - Size: 147 MB - Last synced at: about 1 month ago - Pushed at: 11 months ago - Stars: 17 - Forks: 9

khalooei/LSA
LSA : Layer Sustainability Analysis framework for the analysis of layer vulnerability in a given neural network. LSA can be a helpful toolkit to assess deep neural networks and to extend the adversarial training approaches towards improving the sustainability of model layers via layer monitoring and analysis.
Language: Python - Size: 33.8 MB - Last synced at: 27 days ago - Pushed at: over 3 years ago - Stars: 17 - Forks: 6

yuyay/gpx
Official implementation of GPX: Gaussian Process Regression with Interpretable Sample-wise Feature Weights (published on TNNLS)
Language: Jupyter Notebook - Size: 81.1 KB - Last synced at: 5 months ago - Pushed at: over 3 years ago - Stars: 17 - Forks: 1

MarcelRobeer/explabox
Explore/examine/explain/expose your model with the explabox!
Language: Python - Size: 3.05 MB - Last synced at: 2 days ago - Pushed at: about 2 months ago - Stars: 16 - Forks: 0

fbargaglistoffi/BCF-IV
Package for heterogeneous causal effects in the presence of imperfect compliance (e.g., instrumental variables, fuzzy regression discontinuity designs)
Language: R - Size: 1.45 MB - Last synced at: 2 months ago - Pushed at: over 1 year ago - Stars: 16 - Forks: 4

alonjacovi/XAI-Scholar
Cross-field empirical trends analysis of XAI literature
Language: Jupyter Notebook - Size: 5.31 MB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 16 - Forks: 3

Crisp-Unimib/MERLIN
MERLIN is a global, model-agnostic, contrastive explainer for any tabular or text classifier. It provides contrastive explanations of how the behaviour of two machine learning models differs.
Language: Python - Size: 8.11 MB - Last synced at: over 1 year ago - Pushed at: almost 2 years ago - Stars: 16 - Forks: 5

AntonotnaWang/HINT
[CVPR 2022] HINT: Hierarchical Neuron Concept Explainer
Language: Jupyter Notebook - Size: 12.9 MB - Last synced at: over 2 years ago - Pushed at: about 3 years ago - Stars: 16 - Forks: 0

SeanPLeary/shapley-values-h2o-example
Shapley Values with H2O AutoML Example (ML Interpretability)
Language: HTML - Size: 5.23 MB - Last synced at: over 2 years ago - Pushed at: over 6 years ago - Stars: 16 - Forks: 4

ssfgunner/IIS
[ICLR 2025 Spotlight] This is the official repository for our paper: ''Enhancing Pre-trained Representation Classifiability can Boost its Interpretability''.
Language: Python - Size: 2.89 MB - Last synced at: about 2 months ago - Pushed at: about 2 months ago - Stars: 15 - Forks: 0

NVlabs/MCPNet
[CVPR 2024] Official Repository for MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes
Language: Python - Size: 85.9 KB - Last synced at: 12 days ago - Pushed at: 12 months ago - Stars: 15 - Forks: 2

VITA-Group/DiffSES
[TPAMI] "Symbolic Visual Reinforcement Learning: A Scalable Framework with Object-Level Abstraction and Differentiable Expression Search", Wenqing Zheng*, S P Sharan*, Zhiwen Fan, Kevin Wang, Yihan Xi, Atlas Wang
Language: Python - Size: 67.1 MB - Last synced at: 2 months ago - Pushed at: over 2 years ago - Stars: 15 - Forks: 1

1Konny/class_selectivity_index
On the importance of single directions for generalization(Morcos et al, ICLR 2018)
Language: Shell - Size: 1.51 MB - Last synced at: over 2 years ago - Pushed at: almost 7 years ago - Stars: 15 - Forks: 2

YueYANG1996/KnoBo
NeurIPS 2024 (spotlight): A Textbook Remedy for Domain Shifts Knowledge Priors for Medical Image Analysis
Language: Python - Size: 1000 KB - Last synced at: 8 months ago - Pushed at: 8 months ago - Stars: 14 - Forks: 0

oreopie/hydro-interpretive-dl
Interpretive deep learning for identifying flooding mechanisms
Language: Jupyter Notebook - Size: 4.19 MB - Last synced at: 12 months ago - Pushed at: 12 months ago - Stars: 14 - Forks: 6

deezer/interpretable_nn_attribution
Source code from our RecSys 2020 paper: "Making neural network interpretable with attribution: application to implicit signals prediction" (D. Afchar, R. Hennequin)
Language: Jupyter Notebook - Size: 13.1 MB - Last synced at: 3 months ago - Pushed at: over 4 years ago - Stars: 14 - Forks: 2

ModelOriented/vivo
Variable importance via oscillations
Language: R - Size: 5.14 MB - Last synced at: 27 days ago - Pushed at: over 4 years ago - Stars: 14 - Forks: 3

PrashantSaikia/Dynamic-SHAP-Plots
Enabling interactive plotting of the visualizations from the SHAP project.
Language: Python - Size: 40 KB - Last synced at: about 2 years ago - Pushed at: over 5 years ago - Stars: 14 - Forks: 3
