GitHub / pythonhealthdatascience / pydesrap_mms
Reproducible analytical pipeline (RAP) for Python discrete-event simulation (DES) implementing an M/M/s queueing model.
JSON API: http://repos.ecosyste.ms/api/v1/hosts/GitHub/repositories/pythonhealthdatascience%2Fpydesrap_mms
PURL: pkg:github/pythonhealthdatascience/pydesrap_mms
Stars: 3
Forks: 0
Open issues: 7
License: mit
Language: Jupyter Notebook
Size: 83.6 MB
Dependencies parsed at: Pending
Created at: 7 months ago
Updated at: 10 days ago
Pushed at: 10 days ago
Last synced at: 10 days ago
Topics: discrete-event-simulation, healthcare, healthcare-analysis, python, reproducible-analysis, reproducible-analytical-pipeline, reproducible-analytical-pipelines, reproducible-research, reproducible-science, simpy, simulation, simulation-framework, simulation-model, simulation-modeling, simulation-modelling, template