An open API service providing repository metadata for many open source software ecosystems.

GitHub topics: explanability

karlssberg/Motiv

A solution to the Boolean Blindness problem.

Language: C# - Size: 38 MB - Last synced at: 11 days ago - Pushed at: 11 days ago - Stars: 9 - Forks: 0

tegridydev/mechamap

MechaMap - Toolkit for Mechanistic Interpretability (MI) Research

Language: Python - Size: 14.6 KB - Last synced at: 22 days ago - Pushed at: 4 months ago - Stars: 2 - Forks: 0

CECNL/XBrainLab

We introduce XBrainLab, an open-source user-friendly software, for accelerated interpretation of neural patterns from EEG data based on cutting-edge computational approach.

Language: Python - Size: 9.92 MB - Last synced at: 3 months ago - Pushed at: 3 months ago - Stars: 5 - Forks: 2

yan-elena/domestic-robot-example

Domestic robot example configured for the multi-level explainability framework

Language: ASL - Size: 7.36 MB - Last synced at: 4 months ago - Pushed at: 4 months ago - Stars: 0 - Forks: 0

bertcarnell/tornado

tornado plots for model sensitivity analysis

Language: R - Size: 10 MB - Last synced at: about 1 hour ago - Pushed at: 9 months ago - Stars: 7 - Forks: 0

explanare/eval-neuron-explanation

A framework for evaluating auto-interp pipelines, i.e., natural language explanations of neurons.

Language: Python - Size: 495 KB - Last synced at: about 2 months ago - Pushed at: 10 months ago - Stars: 2 - Forks: 0

sohampoddar26/caves-data

CAVES-dataset accepted at SIGIR'22

Size: 6.26 MB - Last synced at: 9 months ago - Pushed at: 9 months ago - Stars: 11 - Forks: 2

VITA-Group/LTH-Pass

[TMLR] "Can You Win Everything with Lottery Ticket?" by Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang

Language: Python - Size: 8.54 MB - Last synced at: 3 days ago - Pushed at: over 2 years ago - Stars: 10 - Forks: 2

ahmedmalaa/Symbolic-Metamodeling

Codebase for "Demystifying Black-box Models with Symbolic Metamodels", NeurIPS 2019.

Language: Jupyter Notebook - Size: 1.88 MB - Last synced at: about 1 year ago - Pushed at: over 5 years ago - Stars: 47 - Forks: 23

liewchooichin/ml_pipeline 📦

ML Pipeline. Detail documentation of the project in README. Click on actions to see the script.

Language: HTML - Size: 857 KB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 0 - Forks: 0

xuhongzuo/outlier-interpretation

(WWW'21) ATON - an Outlier Interpreation / Outlier explanation method

Language: Python - Size: 1.78 MB - Last synced at: over 1 year ago - Pushed at: almost 3 years ago - Stars: 196 - Forks: 32

vincenzomartello/deepmatcher-experiments

Experiments to explain entity resolution systems

Language: Jupyter Notebook - Size: 58.9 MB - Last synced at: over 1 year ago - Pushed at: almost 5 years ago - Stars: 1 - Forks: 3

sandareka/CCNN

Comprehensible Convolutional Neural Networks via Guided Concept Learning

Language: Python - Size: 2.76 MB - Last synced at: over 1 year ago - Pushed at: over 2 years ago - Stars: 8 - Forks: 2

NoCohen66/computer-vision

The mechanisms behind image classification using a pretrained CNN model in high-dimensional spaces 🏞️

Language: Jupyter Notebook - Size: 86.1 MB - Last synced at: almost 2 years ago - Pushed at: almost 2 years ago - Stars: 1 - Forks: 0

INK-USC/ER-Test

Code for ER-Test, accepted to the Findings of EMNLP 2022

Language: Python - Size: 62.5 KB - Last synced at: almost 2 years ago - Pushed at: about 2 years ago - Stars: 3 - Forks: 0

ivanDonadello/TemplateSystemForNaturalLanguageExplanations Fork of radu1690/Explanations

TS4NLE is converts the explanation of an eXplainable AI (XAI) system into natural language utterances comprehensible by humans.

Language: JavaScript - Size: 65.4 KB - Last synced at: almost 2 years ago - Pushed at: almost 4 years ago - Stars: 2 - Forks: 0

jnikhilreddy/Explainable-AI-papers-Year-wise

List of papers in the area of Explainable Artificial Intelligence Year wise

Size: 18.6 KB - Last synced at: about 2 years ago - Pushed at: about 5 years ago - Stars: 5 - Forks: 1

DanielGoman/Fusion-Permutation-Importance

A project in an AI seminar

Language: Jupyter Notebook - Size: 244 KB - Last synced at: about 2 years ago - Pushed at: about 4 years ago - Stars: 0 - Forks: 0

Related Keywords
explanability 18 explainable-ai 4 interpretability 4 deep-learning 4 machine-learning 3 computer-vision 2 convolutional-neural-networks 2 interpretable-deep-learning 2 python 2 feature-importance 2 fusion 1 anomaly-detection 1 pipeline 1 machine-learning-algorithms 1 feature-extraction 1 feature-engineering 1 exploratory-data-analysis 1 symbolic-regression 1 symbolic-computation 1 metamodeling 1 hypergeometric-function 1 winning-tickets 1 uncertainty 1 robustness 1 pac-bayes 1 out-of-distribution-detection 1 interpretable-machine-learning 1 interpretable-ai 1 explainable-ml 1 explainable-artificial-intelligence 1 deep-neural-networks 1 natural-language-generation 1 knowledge-graph 1 nlp 1 transfer-learning 1 resnet-50 1 neural-network 1 interpretable-models 1 interpretable-classifcation 1 cnn 1 entity-resolution 1 outlier-interpretation 1 outlier-detection 1 outlier-aspect-mining 1 bdi-model 1 xai 1 pytorch 1 mne 1 electroencephalogram 1 eeg 1 captum 1 transformers 1 research-tool 1 open-source 1 mechanistic-interpretability 1 llm-research 1 specification-pattern 1 functional 1 domain-driven-design 1 boolean-satisfiability 1 boolean-logic 1 boolean-blindness 1 boolean-algebra 1 lottery-ticket-hypothesis 1 loss-landscape 1 generalization 1 flatness 1 adversarial-robustness 1 vaccine 1 summarization 1 multi-label-classification 1 dataset 1 covid-19 1 concerns 1 probing 1 neurons 1 causal-intervention 1 sensitivity-analysis 1 regression 1 multi-agent-systems 1 jason 1 debugging 1