GitHub topics: pseudospectral
OpenMDAO/dymos
Open Source Optimization of Dynamic Multidisciplinary Systems
Language: Python - Size: 716 MB - Last synced at: 4 days ago - Pushed at: 16 days ago - Stars: 243 - Forks: 67

danielrherber/dt-qp-project
This project solves linear-quadratic dynamic optimization (LQDO) problems using direct transcription (DT) and quadratic programming (QP)
Language: MATLAB - Size: 1.88 MB - Last synced at: 28 days ago - Pushed at: 28 days ago - Stars: 21 - Forks: 6

markmbaum/simple-spectral-PDEs
pseudospectral (fourier) solutions of a few 1-dimensional PDEs
Language: Julia - Size: 31.5 MB - Last synced at: 29 days ago - Pushed at: 6 months ago - Stars: 2 - Forks: 0

joshburkart/tsunami
Interactive ocean simulations in a web browser
Language: Jupyter Notebook - Size: 37.5 MB - Last synced at: 3 months ago - Pushed at: 10 months ago - Stars: 1 - Forks: 0

sandeep026/boundary_value_problems_using_pseudospectral_collocation
Solving boundary value problem (BVP) using Legendre Gauss Lobatto (LGL) collocation
Language: MATLAB - Size: 106 KB - Last synced at: 10 months ago - Pushed at: 10 months ago - Stars: 2 - Forks: 0

sandeep026/numerical_optimal_control_MATLAB
Demonstration of some direct transcription methods for optimal control problem in matlab/octave
Language: MATLAB - Size: 20.5 KB - Last synced at: 10 months ago - Pushed at: 10 months ago - Stars: 2 - Forks: 0

souryajitroy/Non-Linear-PDE-course-codes
Assignment codes from my Non -linear PDE course in ICTS TIFR
Language: Jupyter Notebook - Size: 18.9 MB - Last synced at: over 1 year ago - Pushed at: over 1 year ago - Stars: 0 - Forks: 0

SciML/DiffEqApproxFun.jl 📦
The tools for proper interactions between ApproxFun.jl and DifferentialEquations.jl for pseudospectiral partial differential equation discretizations in scientific machine learning (SciML)
Language: Julia - Size: 30.3 KB - Last synced at: 6 days ago - Pushed at: over 4 years ago - Stars: 13 - Forks: 8

JiahanBro/2DIncompressibleNavierStokesSolver
This repository provides code solving the 2D Incompressible Navier-Stokes equations numerically
Language: Python - Size: 45.9 KB - Last synced at: almost 2 years ago - Pushed at: almost 6 years ago - Stars: 5 - Forks: 6
